• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

复杂海况下跨海桥梁钢沉井基础下放过程及影响优化

陈明林 黄博 薛泽辰 周建庭

陈明林, 黄博, 薛泽辰, 周建庭. 复杂海况下跨海桥梁钢沉井基础下放过程及影响优化[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230712
引用本文: 陈明林, 黄博, 薛泽辰, 周建庭. 复杂海况下跨海桥梁钢沉井基础下放过程及影响优化[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230712
CHEN Mingling, HUANG Bo, XUE Zechen, Zhou Jianting. Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230712
Citation: CHEN Mingling, HUANG Bo, XUE Zechen, Zhou Jianting. Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230712

复杂海况下跨海桥梁钢沉井基础下放过程及影响优化

doi: 10.3969/j.issn.0258-2724.20230712
基金项目: 国家自然科学基金项目(52478140);重庆市研究生科研创新项目(CYB240249)
详细信息
    作者简介:

    陈明林(1999—),男,博士研究生,研究方向为跨海桥梁波浪动力学,E-mail:minglinchen@mails.cqjtu.edu.cn

    通讯作者:

    黄博(1992—),男,副教授,博士,研究方向为跨海桥梁动力学及流固耦合,E-mail:bohuang@cqjtu.edu.cn

  • 中图分类号: U445.557

Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization

  • 摘要:

    跨海桥梁大型预制钢沉井的定位下放施工面临着海洋复杂环境中极端波浪和水流的巨大威胁,深入研究波流作用下钢沉井定位下放过程中的动力特性,对钢沉井的定位准确性、下放稳定性及施工安全性具有重要意义. 基于LS-DYNA有限元程序构建波流作用下三维全尺寸钢沉井流固耦合模型,通过与Stokes二阶波浪解析解和已有水槽耦合实验结果进行对比,验证该三维流固耦合模型的准确性;使用已验证模型探究波浪参数、水流参数、锚缆布置形式以及结构下放位置等对钢沉井定位下放过程中所受的波流荷载和动力特性影响规律. 研究结果表明:所提出的锚缆布置形式可以有效降低钢沉井结构在不同波流作用下的位移和倾角,最大倾角不超过2°;相较于水流单独作用,波流共同作用对钢沉井造成的最大水平力、水平位移和倾角至少分别增加了约86.34%、25.15%和112.96%;随着钢沉井淹没深度的增加,钢沉井所受最大水平力和水平位移分别增大了约41.90%和50.62%,钢沉井的最大倾角却减小了约31.06%;在钢沉井定位下放研究中,应充分考虑结构在不同下放深度时所受的波流荷载和位移等的影响,为分析钢沉井下放过程中的稳定性提供可靠的理论基础.

     

  • 图 1  耦合模型示意(单位:m)

    Figure 1.  Schematic diagram of coupling model (unit: m)

    图 2  钢沉井示意

    Figure 2.  Schematic diagram of steel caisson

    图 3  波浪面时程对比

    Figure 3.  Comparison of time history of wave profile

    图 4  结构波浪力时程对比

    Figure 4.  Comparison of time histories of structural wave force

    图 5  结构位移时程对比

    Figure 5.  Comparison of time histories of structural displacementt

    图 6  锚缆布置形式示意

    Figure 6.  Schematic diagram of anchor cable arrangement

    图 7  不同锚缆布置形式下结构位移对比

    Figure 7.  Comparison of structural displacements with different anchor cable arrangements

    图 8  钢沉井触底示意(V=5 m/s)

    Figure 8.  Schematic diagram of a steel caisson in contact with the seabed (V=5 m/s)

    图 9  钢沉井受力时程对比

    Figure 9.  Comparison of time histories of forces on steel caisson

    图 10  钢沉井位移时程对比

    Figure 10.  Comparison of time histories of steel caisson displacements

    图 11  不同工况下钢沉井所受水平力和位移峰值对比

    Figure 11.  Comparison of peak horizontal force and displacement of steel caisson under different conditions

    图 12  不同下放深度钢沉井所受水平力和位移峰值对比

    Figure 12.  Comparison of peak horizontal forces and displacements of steel caisson at different lowering depths

    图 13  不同下放深度钢沉井应力图

    Figure 13.  Stress diagrams for steel caissons at different lowering depths

  • [1] 祝兵,黄博,康啊真,等. 跨海桥梁上部结构极端波浪(流)作用2019年度研究进展[J]. 土木与环境工程学报(中英文),2020,42(5): 106-114.

    ZHU BING, HUANG BO, KANG AZHEN, et al. State-of-the-art review of the action of extreme wave (wave-current) on the superstructure of sea-crossing bridges in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 106-114.
    [2] 项海帆. 21世纪世界桥梁工程的展望[J]. 土木工程学报,2000,33(3): 1-6.

    XIANG Haifan. Prospect of world’s bridge projects in 21st century[J]. China Civil Engineering Journal, 2000, 33(3): 1-6.
    [3] CHEN M L, HUANG B, YANG Z Y, et al. Study on the mechanical characteristics and failure mechanism of the coastal bridge with a box-girder superstructure under the action of breaking solitary waves[J]. Ocean Engineering, 2023, 287(1): 115834.1-115834.18.
    [4] XU G J, CAI C S. Numerical investigation of the lateral restraining stiffness effect on the bridge deck-wave interaction under Stokes waves[J]. Engineering Structures, 2017, 130: 112-123. doi: 10.1016/j.engstruct.2016.10.007
    [5] 魏凯,杨雄欣,刘强,等. 大型桥梁沉井下沉过程中的水流力数值模拟[J]. 铁道标准设计,2020,64(11): 62-67.

    WEI Kai, YANG Xiongxin, LIU Qiang, et al. Numerical analyses of current load of large bridge Caisson during its sinking process[J]. Railway Standard Design, 2020, 64(11): 62-67.
    [6] 自然资源部. 2022年中国海洋灾害公报(摘登)[N]. 中国自然资源报,2023-04-14.
    [7] 董学超,郭明伟,蒋振雄,等. 基于土压力监测值的超大沉井下沉端阻力计算与分析[J]. 桥梁建设,2022,52(5): 78-84.

    DONG Xuechao, GUO Mingwei, JIANG Zhenxiong, et al. End resistance calculation and analysis of super-large open caisson during soil excavation sinking based on monitored soil pressure data[J]. Bridge Construction, 2022, 52(5): 78-84.
    [8] 蒋凡,刘华,岳青,等. 超大沉井基础取土下沉刃脚土压力变化规律研究[J]. 岩土力学,2022,43(增2): 431-442.

    JIANG Fan, LIU Hua, YUE Qing, et al. Variation trend of soil pressure under cutting edges of the super large caisson during sinking stage[J]. Rock and Soil Mechanics, 2022, 43(S2): 431-442.
    [9] 李维生,杨彤薇. 锚碇沉井排水下沉期应力特性研究[J]. 公路交通科技,2022,39(7): 106-114.

    LI Weisheng, YANG Tongwei. Study on stress characteristics of anchorage caisson during drainage subsidence period[J]. Journal of Highway and Transportation Research and Development, 2022, 39(7): 106-114.
    [10] DONG X C, GUO M W, WANG S L. Inclination prediction of a giant open caisson during the sinking process using various machine learning algorithms[J]. Ocean Engineering, 2023, 269: 113587.1-113587.14.
    [11] XU Y, XU G J, XUE S H, et al. Failure mechanism and vulnerability assessment of coastal box-girder bridge with laminated rubber bearings under extreme waves[J]. Ocean Engineering, 2022, 266(2): 112834.1-112834.13.
    [12] 黄博,唐尧,杨志莹,等. 极端波浪作用下跨海箱形桥梁上部结构流固耦合特性研究[J]. 振动与冲击,2023,42(17): 210-219.

    HUANG Bo, TANG Yao, YANG Zhiying, et al. Fluid-structure interaction characteristics of superstructure of a cross-sea box bridge under extreme wave action[J]. Journal of Vibration and Shock, 2023, 42(17): 210-219.
    [13] CHEN X B, XU G J, LIN C, et al. A comparative study on lateral displacements of movable T-deck and Box-deck under solitary waves[J]. Structures, 2021, 34:1614-1635.
    [14] XU G J, CAI C S. Numerical simulations of lateral restraining stiffness effect on bridge deck–wave interaction under solitary waves[J]. Engineering Structures, 2015, 101:337-351.
    [15] LI J Z, KONG X, YANG Y L, et al. Computer vision-based measurement of wave force on the rectangular structure[J]. Ocean Engineering, 2023, 270: 113624.1-113624.15.
    [16] RAHMAN M A, MIZUTANI N, KAWASAKI K. Numerical modeling of dynamic responses and mooring forces of submerged floating breakwater[J]. Coastal Engineering, 2006, 53(10): 799-815. doi: 10.1016/j.coastaleng.2006.04.001
  • 加载中
图(13)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-05-23
  • 网络出版日期:  2024-11-01

目录

    /

    返回文章
    返回