• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高温磁悬浮轴承-转子系统建模与动力学分析

金超武 辛宇 周扬 赵瑞瑾 周瑾 徐园平

金超武, 辛宇, 周扬, 赵瑞瑾, 周瑾, 徐园平. 高温磁悬浮轴承-转子系统建模与动力学分析[J]. 西南交通大学学报, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
引用本文: 金超武, 辛宇, 周扬, 赵瑞瑾, 周瑾, 徐园平. 高温磁悬浮轴承-转子系统建模与动力学分析[J]. 西南交通大学学报, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
Citation: JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667

高温磁悬浮轴承-转子系统建模与动力学分析

doi: 10.3969/j.issn.0258-2724.20230667
基金项目: 国家自然科学基金(52275059);航空发动机及燃气轮机基础科学中心重点项目(P2022-B-Ⅲ-004-001)
详细信息
    作者简介:

    金超武(1980—),男,副教授,博士,研究方向为磁悬浮技术,E-mail:jinchaowu@nuaa.edu.cn

  • 中图分类号: TH113.1;V231.96

Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System

  • 摘要:

    在多电航空发动机中,主动磁悬浮轴承因其耐高温、非接触等特性可以突破温度对支承部位的限制,使支承部位能够更靠近燃烧室. 为探究温度对磁悬浮轴承转子系统动态特性的影响规律,提出一种高温磁悬浮轴承转子系统动力学建模方法. 通过仿真得到转子在不同温度下的温度分布,并使用多项式拟合转子轴向温度分布;基于有限元方法推导柔性转子单元的动力学模型,引入温度影响,建立考虑温度影响的磁悬浮轴承转子系统整体动力学模型,并通过模态试验验证模型的准确性;基于理论动力学模型分析系统的动态特性. 结果表明:温度升高会导致转子的前三阶支承模态频率下降,增大各阶幅频响应幅值;当温度从常温升至450 ℃时,转子的前三阶弯曲支承模态频率分别降低了3.818%、5.670%、3.183%,前三阶弯曲模态幅频响应幅值分别升高了83.4%、34.4%、24.1%.

     

  • 图 1  高温磁悬浮轴承模拟转子试验台

    Figure 1.  Simulated test bench of high-temperature magnetic bearing-rotor

    图 2  仿真温度区域设置与温度采样点说明

    Figure 2.  Simulated temperature region setting and temperature sampling point description

    图 3  Ansys转子温度场仿真模型

    Figure 3.  Ansys simulation model of rotor temperature field

    图 4  转子温度场导出路径

    Figure 4.  Export path of rotor temperature field

    图 5  不同热源工况下的转子轴向温度数据

    Figure 5.  Axial temperature data of rotor under different heat source conditions

    图 6  450 ℃时的轴向温度拟合曲线

    Figure 6.  Axial temperature fitting curves at 450 ℃

    图 7  单元定义和坐标系

    Figure 7.  Unit definition and coordinate system

    图 8  系统刚度集总矩阵

    Figure 8.  Lumped matrix of system stiffness

    图 9  随温度变化的转子单元刚度矩阵示意

    Figure 9.  Diagram of rotor unit stiffness matrix variation with temperature

    图 10  软磁合金在25 ℃和450 ℃的B-H曲线

    Figure 10.  B-H curves of magnetically soft alloy at 25 ℃ and 450 ℃

    图 11  单自由度电磁力与参数示意

    Figure 11.  Single degree of freedom electromagnetic force and parameters

    图 12  温度对等效刚度的影响

    Figure 12.  Temperature influence on equivalent stiffness

    图 13  温度变化对转子支承模态频率的影响

    Figure 13.  Influence of temperature variation on support modal frequency of rotor

    图 14  转子系统幅频动力学响应

    Figure 14.  Amplitude frequency dynamics response of rotor system

    表  1  机械系统所使用的材料

    Table  1.   Materials used in mechanical systems

    序号 所用材料
    1,2,3,4,6,8 1Cr11Ni2W2MoV
    5 GH4169
    7,10 高温软磁合金(1J22)
    9,11 38 黄铜
    下载: 导出CSV

    表  2  数学模型拟合的R2

    Table  2.   R2 by mathematical model fitting

    m 150 ℃ 300 ℃ 450 ℃
    1 0.799 123 0.815 718 0.824 486
    2 0.993 046 0.993 757 0.993 782
    3 0.996 804 0.995 234 0.994 565
    4 0.998 708 0.998 45 0.998 344
    5 0.999 406 0.999 188 0.999 120
    6 0.999 495 0.999 374 0.999 328
    下载: 导出CSV

    表  3  磁悬浮轴承的结构参数和电控参数

    Table  3.   Structural parameters and electrical control parameters of magnetic bearing

    参数 取值 参数 取值
    转子半径/mm 89.4 比例系数 kp 1
    磁极面积 As/mm2 200 积分系数 ki 1
    磁极夹角 θ/(°) 22.5 微分系数 kd 0.0 005
    单边气隙 sa/mm 0.3 偏置电流 I/A 2
    定子齿数 8 线圈匝数 N/匝 240
    下载: 导出CSV

    表  4  支承模态频率对比

    Table  4.   Comparison of support modal frequency

    温度/℃ 阶次 计算频率/Hz 试验频率/Hz 误差/%
    25
    1 994.490 994.375 0.0 115
    2 1506.200 1506.250 0.0 033
    3 2437.090 2494.380 2.2 960
    150 1 990.606 983.750 0.6 900
    2 1471.570 1496.880 0.0 169
    3 2421.910 2477.610 2.3 000
    300 1 982.417 976.250 0.6 300
    2 1450.280 1450.990 0.0 493
    3 2404.800 2460.590 2.2 320
    450 1 968.743 958.750 1.0 000
    2 1412.160 1413.460 0.0 922
    3 2374.860 2391.080 2.6 830
    下载: 导出CSV
  • [1] 吴志琨,李军,时瑞军. 多电航空发动机研究现况及关键技术[J]. 航空工程进展,2012,3(4): 463-467. doi: 10.3969/j.issn.1674-8190.2012.04.015

    WU Zhikun, LI Jun, SHI Ruijun. Current research status and key technologies of more-electric aeroengine[J]. Advances in Aeronautical Science and Engineering, 2012, 3(4): 463-467. doi: 10.3969/j.issn.1674-8190.2012.04.015
    [2] 刘程子,湛江,杨艳,等. 主动磁悬浮轴承–柔性转子的研究和发展综述[J]. 中国电机工程学报,2020,40(14): 4602-4614,4739.

    LIU Chengzi, ZHAN Jiang, YANG Yan, et al. Review of research status and development of flexible rotor-magnetic bearing[J]. Proceedings of the CSEE, 2020, 40(14): 4602-4614,4739.
    [3] 金超武. 高温磁悬浮轴承若干关键技术研究[D]. 南京:南京航空航天大学,2011.
    [4] ZIAEI-RAD S, KOUCHAKI E, IMREGUN M. Thermoelastic mdeling of rotor response with shaft rub[J]. Journal of Applied Mechanics, 2010, 77(6): 061010.1-061010.1.
    [5] 朱向哲,贺威,袁惠群. 稳态温度场对转子系统振动特性的影响[J]. 东北大学学报(自然科学版),2008,29(1): 113-116.

    ZHU Xiangzhe, HE Wei, YUAN Huiqun. Effects of steady temperature field on vibrational characteristics of a rotor system[J]. Journal of Northeastern University (Natural Science), 2008, 29(1): 113-116.
    [6] 何鹏,刘占生,刘镇星. 考虑杨氏模量随轴向温度分布变化的转子有限元建模方法研究[J]. 振动与冲击,2012,31(14): 22-26,55. doi: 10.3969/j.issn.1000-3835.2012.14.005

    HE Peng, LIU Zhansheng, LIU Zhenxing. Finite element modelling of rotor considering the variation of Yang’s modulus with axial temperature distribution[J]. Journal of Vibration and Shock, 2012, 31(14): 22-26,55. doi: 10.3969/j.issn.1000-3835.2012.14.005
    [7] GOU X F, ZHU L Y, QI C J. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature[J]. Journal of Sound and Vibration, 2017, 410: 187-208.
    [8] XIANG F G, CHEN X, ZHANG B, et al. Simulation method of rotor dynamic characteristics considering temperature distribution and aerodynamic load[C]//Proceedings of ASME Turbo Expo 2022:Turbomachinery Technical Conference and Exposition. Rotterdam:ASME, 2022:13-17.
    [9] DU T C, SUN Y H, GENG H P, et al. Dynamic Analysis on Rotor System Supported by Active Magnetic Bearings based on Sliding Mode Control[C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA). Changchun:IEEE, 2018:1960-1965.
    [10] MUSHI S E, LIN Z L, ALLAIRE P E. Design, construction, and modeling of a flexible rotor active magnetic bearing test rig[J]. ASME Transactions on Mechatronics, 2012, 17(6): 1170-1182.
    [11] XU Y P, ZHOU J, LIN Z L, et al. Identification of dynamic parameters of active magnetic bearings in a flexible rotor system considering residual unbalances[J]. Mechatronics, 2018, 49: 46-55.
    [12] 沈权,周瑾,马彦超,等. 基础激励下磁悬浮转子系统动力学建模与分析[J]. 振动与冲击,2022,41(17): 35-47,72.

    SHEN Quan, ZHOU Jin, MA Yanchao, et al. Dynamic modeling and analysis of maglev rotor system under base excitation[J]. Journal of Vibration and Shock, 2022, 41(17): 35-47,72.
    [13] WU C, SU Z Z, WANG D, et al. Dynamic modeling method for active magnetic bearings-rotor system of steam turbines[J]. Journal of Mechanical Science and Technology, 2023, 37(4): 1665-1673.
    [14] 王戈一. 磁悬浮多电发动机的研究[J]. 燃气涡轮试验与研究,2007,20(4): 15-18,35. doi: 10.3969/j.issn.1672-2620.2007.04.003

    WANG Geyi. Study of a more-electric engine with active magnetic bearings[J]. Gas Turbine Experiment and Research, 2007, 20(4): 15-18,35. doi: 10.3969/j.issn.1672-2620.2007.04.003
    [15] BURDET L. Active magnetic bearing design and characterization for high temperature applications[R]. Swiss:Federal Institute of Technology in Lausanne, 2006.
    [16] MONTAGUE G T, JANSEN M J, PROVENZA A, et al. Experimental high temperature characterization of a magnetic bearing for turbomachinery[C]//59th Annual Forum and Technology Display. Phoenix:Vertical Flight Society, 2003:1-18.
    [17] SHI Z, SUN X D, LEI G, et al. Multiobjective optimization of a five-phase bearingless permanent magnet motor considering winding area[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2657-2666.
    [18] 周扬,周瑾,张越,等. 基于RBF近似模型的磁悬浮轴承结构优化设计[J]. 西南交通大学学报,2022,57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766

    ZHOU Yang, ZHOU Jin, ZHANG Yue, et al. Optimum structural design of active magnetic bearing based on RBF approximation model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766
    [19] 徐园平. 柔性转子磁悬浮轴承支承特性辨识[D]. 南京:南京航空航天大学,2018.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  102
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-04-18

目录

    /

    返回文章
    返回