• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

自动化初始信任水平对城市轨道交通驾驶任务的影响

丁铁成 支锦亦 邹瑞 王振宇 何思俊 景春晖

丁铁成, 支锦亦, 邹瑞, 王振宇, 何思俊, 景春晖. 自动化初始信任水平对城市轨道交通驾驶任务的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230654
引用本文: 丁铁成, 支锦亦, 邹瑞, 王振宇, 何思俊, 景春晖. 自动化初始信任水平对城市轨道交通驾驶任务的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230654
DING Tiecheng, ZHI Jinyi, ZOU Rui, WANG Zhenyu, HE Sijun, JING Chunhui. Impact of Initial Levels of Trust in Automation on Urban Rail Transit Driving Tasks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230654
Citation: DING Tiecheng, ZHI Jinyi, ZOU Rui, WANG Zhenyu, HE Sijun, JING Chunhui. Impact of Initial Levels of Trust in Automation on Urban Rail Transit Driving Tasks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230654

自动化初始信任水平对城市轨道交通驾驶任务的影响

doi: 10.3969/j.issn.0258-2724.20230654
基金项目: 国家重点研发计划(2022YFB4301202);四川省自然科学基金项目(22NSFSC0865);四川省社会科学重点研究基地——系统科学与企业发展研究中心规划项目(Xq23B08)
详细信息
    作者简介:

    丁铁成(1996—),男,博士研究生,研究方向为城市轨道交通人因研究,E-mail:dtiecheng@126.com

    通讯作者:

    支锦亦(1974—),女,教授,博士,研究方向为运载工具工业设计与人因综合评价研究,E-mail:7601662@qq.com

  • 中图分类号: U271.91

Impact of Initial Levels of Trust in Automation on Urban Rail Transit Driving Tasks

  • 摘要:

    为明确自动化初始信任水平对城市轨道交通驾驶任务接管绩效、工作负载和视觉行为的影响,设计并验证自动化初始信任问卷,使用问卷筛选显著初始信任水平被试进行模拟驾驶试验;通过记录常用制动和紧急制动时间反应接管绩效,使用NASA-TLX (national aeronautics and space administration task load index)问卷计算工作负载,并分别采集轨道路面和驾驶界面2个区域的扫视次数、总注视次数、注视时间和平均注视时间以分析视觉行为差异. 试验结果表明:不同初始信任水平的参与者接管绩效不存在显著差异;高初始信任水平参与者相比低信任水平参与者整体工作负载低21.39%,身体负荷低34.24%和挫折程度低31.96%;初始信任水平显著影响视觉行为,低信任参与者趋向于活跃的视觉搜索行为,轨道路面的注视次数、轨道路面和驾驶界面的扫视次数分别高出28.14%、41.78%和42.91%;而高信任参与者趋向于固定的视觉凝视行为,轨道路面的平均注视时间高出40.74%. 研究可为城市轨道交通驾驶安全干预提供理论参考和实践依据.

     

  • 图 1  研究框架

    Figure 1.  Research framework

    图 2  试验环境

    Figure 2.  Test environment

    图 3  模拟驾驶制动任务

    Figure 3.  Braking tasks during driving simulation

    图 4  接管绩效比较结果

    Figure 4.  Comparison results of takeover performance

    图 5  工作负载比较结果

    Figure 5.  Comparison results of workload

    图 6  不同信任水平司机的视觉行为

    Figure 6.  Visual behavior of drivers with different levels of trust

    表  1  自动化初始信任评估问卷项目

    Table  1.   Initial trust in automation assessment questionnaire items

    编号 量表选项 参考文献
    1 我感觉城市轨道交通自动驾驶系统是可靠的 文献[19]
    2 与手动驾驶相比,自动驾驶系统能为我提供更高的安全性 文献[19]
    3* 我宁愿保持对车辆的手动控制,也不愿每次都将其委托给自动驾驶系统 文献[19]
    4 我相信自动驾驶系统的反馈决策 文献[20]
    5  我相信自动驾驶系统能够管理复杂的驾驶情况. 例如即使是运行状况非常复杂,我也会把驾驶任务交给自动驾驶 文献[21]
    6 如果天气条件恶劣(例如,雾,眩光,下雨),我仍然会将驾驶任务委托给自动驾驶系统 文献[19]
    7  自动驾驶系统可以帮助我降低警觉性不高和注意力不集中产生的错误,有了自动驾驶系统,我不需要完全的全神贯注 文献[22]
    8 如果单调驾驶任务让我感觉很无聊,我宁愿把它委托给自动化系统,也不愿意自己手动驾驶 文献[23]
    9 即使轮班制让我产生了困倦,有了自动化,我仍然可以放心进行驾驶任务 文献[24]
    注:“*”表示结果分数反向转换
    下载: 导出CSV

    表  2  初始信任水平分类结果

    Table  2.   Classification results of initial levels of trust

    组别 样本量/名 得分范围 聚类中心 标准差
    显著高信任 16 46~37 39.38 2.31
    非显著信任 26 36~31 33.35 1.32
    显著低信任 18 30~20 27.83 2.83
    下载: 导出CSV

    表  3  视觉行为比较结果

    Table  3.   Comparison results of visual behavior

    兴趣区 视觉行为指标 高初始信任组 低初始信任组 t p
    均值 标准差 均值 标准差
    前方轨道路面扫视次数/次184.2597.604261.2996.36−2.2810.030
    总注视时间/s637.36196.88604.15124.840.5820.565
    总注视次数/次1788.56576.012291.88395.41−2.9420.006
    平均注视时间/(s·次−10.380.170.270.062.4720.019
    操作界面扫视次数/次154.6989.43221.1290.39−2.1210.042
    总注视时间/s152.6886.14163.2272.23−0.3820.705
    总注视次数/次564.75255.60725.18280.83−1.7130.097
    平均注视时间/(s·次−10.260.080.220.051.4650.153
    下载: 导出CSV
  • [1] 付世亮. 城市轨道交通车辆系统安全完整性等级分析[J]. 城市轨道交通研究, 2019, 22(10): 70-74.

    FU Shiliang. Safety integrity level analysis of urban guided transport vehicle system[J]. Urban Mass Transit, 2019, 22(10): 70-74.
    [2] 徐田坤. 城市轨道交通网络运营安全风险评估理论与方法研究[D]. 北京: 北京交通大学, 2012.
    [3] 向泽锐, 支锦亦, 李然, 等. 我国城市轨道列车工业设计研究综述[J]. 西南交通大学学报, 2021, 56(6): 1319-1328.

    XIANG Zerui, ZHI Jinyi, LI Ran, et al. Review on industrial design of urban rail vehicles in China[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1319-1328.
    [4] SINGH P, DULEBENETS M A, PASHA J, et al. Deployment of autonomous trains in rail transportation: current trends and existing challenges[J]. IEEE Access, 2021, 9: 91427-91461. doi: 10.1109/ACCESS.2021.3091550
    [5] WANG A B, GUO B Y, DU H, et al. Impact of automation at different cognitive stages on high-speed train driving performance[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24599-24608. doi: 10.1109/TITS.2022.3211709
    [6] LEES T, CHALMERS T, BURTON D, et al. Electroencephalography as a predictor of self-report fatigue/sleepiness during monotonous driving in train drivers[J]. Physiological Measurement, 2018, 39(10): 105012.1-105012.13.
    [7] CHIOU E K, LEE J D. Trusting automation: designing for responsivity and resilience[J]. Human Factors, 2023, 65(1): 137-165. doi: 10.1177/00187208211009995
    [8] LEE J D, SEE K A. Trust in automation: designing for appropriate reliance[J]. Human Factors, 2004, 46(1): 50-80. doi: 10.1518/hfes.46.1.50.30392
    [9] ZHANG T R, TAO D, QU X D, et al. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 207-220. doi: 10.1016/j.trc.2018.11.018
    [10] KARPINSKY N D, CHANCEY E T, PALMER D B, et al. Automation trust and attention allocation in multitasking workspace[J]. Applied Ergonomics, 2018, 70: 194-201. doi: 10.1016/j.apergo.2018.03.008
    [11] PAN H Y, XU K, QIN Y, et al. How does drivers’ trust in vehicle automation affect non-driving-related task engagement, vigilance, and initiative takeover performance after experiencing system failure[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 98: 73-90. doi: 10.1016/j.trf.2023.09.001
    [12] 王新野, 李苑, 常明, 等. 自动化信任和依赖对航空安全的危害及其改进[J]. 心理科学进展, 2017, 25(9): 1614-1622. doi: 10.3724/SP.J.1042.2017.01614

    WANG Xinye, LI Yuan, CHANG Ming, et al. The detriments and improvement of automation trust and dependence to aviation safety[J]. Advances in Psychological Science, 2017, 25(9): 1614-1622. doi: 10.3724/SP.J.1042.2017.01614
    [13] SKRAANING G, JAMIESON G A. Human performance benefits of the automation transparency design principle[J]. Human Factors, 2021, 63(3): 379-401. doi: 10.1177/0018720819887252
    [14] SEBOK A, WICKENS C D. Implementing lumberjacks and black swans into model-based tools to support human–automation interaction[J]. Human Factors, 2017, 59(2): 189-203. doi: 10.1177/0018720816665201
    [15] KÖRBER M, BASELER E, BENGLER K. Introduction matters: manipulating trust in automation and reliance in automated driving[J]. Applied Ergonomics, 2018, 66: 18-31. doi: 10.1016/j.apergo.2017.07.006
    [16] DU Y, ZHI J Y, HE S J. Impact of experience on visual behavior and driving performance of high-speed train drivers[J]. Scientific Reports, 2022, 12: 5956.1-5956.10.
    [17] MANCHON J B, BUENO M, NAVARRO J. How the initial level of trust in automated driving impacts drivers’ behaviour and early trust construction[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86: 281-295. doi: 10.1016/j.trf.2022.02.006
    [18] KOHN S C, DE VISSER E J, WIESE E, et al. Measurement of trust in automation: a narrative review and reference guide[J]. Frontiers in Psychology, 2021, 12: 604977.1-604977.23.
    [19] BRANDENBURGER N, NAUMANN A. On track: a series of research about the effects of increasing railway automation on the train driver[J]. IFAC-PapersOnLine, 2019, 52(19): 288-293. doi: 10.1016/j.ifacol.2019.12.115
    [20] O’CASS A, CARLSON J. An e-retailing assessment of perceived website-service innovativeness: implications for website quality evaluations, trust, loyalty and word of mouth[J]. Australasian Marketing Journal (AMJ), 2012, 20(1): 28-36. doi: 10.1016/j.ausmj.2011.10.012
    [21] POWELL J P, FRASZCZYK A, CHEONG C N, et al. Potential benefits and obstacles of implementing driverless train operation on the Tyne and wear metro: a simulation exercise[J]. Urban Rail Transit, 2016, 2(3): 114-127.
    [22] RYAN B, WILSON J R, SHARPLES S, et al. Developing a rail ergonomics questionnaire (REQUEST)[J]. Applied Ergonomics, 2009, 40(2): 216-229. doi: 10.1016/j.apergo.2008.04.006
    [23] BRANDENBURGER N, NAUMANN A, JIPP M. Task-induced fatigue when implementing high grades of railway automation[J]. Cognition, Technology & Work, 2021, 23(2): 273-283.
    [24] COTRIM T, CARVALHAIS J, NETO C, et al. Determinants of sleepiness at work among railway control workers[J]. Applied Ergonomics, 2017, 58: 293-300. doi: 10.1016/j.apergo.2016.07.006
    [25] NIU J W, GENG H, ZHANG Y J, et al. Relationship between automation trust and operator performance for the novice and expert in spacecraft rendezvous and docking (RVD)[J]. Applied Ergonomics, 2018, 71: 1-8. doi: 10.1016/j.apergo.2018.03.014
    [26] OLSSON N. A validation study comparing performance in a low-fidelity train-driving simulator with actual train driving performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 97: 109-122. doi: 10.1016/j.trf.2023.07.007
    [27] NAWEED A, CHAPMAN J, VANDELANOTTE C, et al. ‘Just right’ job design: a conceptual framework for sustainable work in rail driving using the goldilocks work paradigm[J]. Applied Ergonomics, 2022, 105: 103806.1-103806.18.
    [28] BERGGREN N, EIMER M. Visual working memory load disrupts template-guided attentional selection during visual search[J]. Journal of Cognitive Neuroscience, 2018, 30(12): 1902-1915. doi: 10.1162/jocn_a_01324
    [29] HERGETH S, LORENZ L, VILIMEK R, et al. Keep your scanners peeled[J]. Human Factors, 2016, 58(3): 509-519. doi: 10.1177/0018720815625744
    [30] NATSOULAS T. The tunnel effect, Gibson’s perception theory, and reflective seeing[J]. Psychological Research, 1992, 54(3): 160-174. doi: 10.1007/BF00922095
    [31] STAPEL J, GENTNER A, HAPPEE R. On-road trust and perceived risk in Level 2 automation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89: 355-370. doi: 10.1016/j.trf.2022.07.008
    [32] HARTWICH F, WITZLACK C, BEGGIATO M, et al. The first impression counts – A combined driving simulator and test track study on the development of trust and acceptance of highly automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65: 522-535. doi: 10.1016/j.trf.2018.05.012
    [33] WANG Z T, LI M K, ZHANG Q D, et al. High-speed train drivers’ operation performance: key factors, models, and management implications[J]. International Journal of Industrial Ergonomics, 2023, 97: 103482.1-103482.10.
    [34] MA S, ZHANG W, YANG Z, et al. Promote or inhibit: an inverted U-shaped effect of workload on driver takeover performance[J]. Traffic Injury Prevention, 2020, 21(7): 482-487. doi: 10.1080/15389588.2020.1804060
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  28
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-04-29
  • 网络出版日期:  2025-09-06

目录

    /

    返回文章
    返回