Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

极端气候下交通基础设施脆弱性研究综述

贾宏宇 肖楚照 康炜 王传琦 郑史雄

唐昌意, 徐妍, 崔凯, 陈峰, 侯伟生, 张胜杰. 预应力控制水平及混合配筋影响下PRC管桩的抗弯承载性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230393
引用本文: 贾宏宇, 肖楚照, 康炜, 王传琦, 郑史雄. 极端气候下交通基础设施脆弱性研究综述[J]. 西南交通大学学报, 2025, 60(2): 484-502. doi: 10.3969/j.issn.0258-2724.20230650
TANG ChangYi, XU Yan, CUI Kai, CHEN Feng, HOU Weisheng, ZHANG Shengjie. Flexural Bearing Performance of Prestressed Concrete Pipe Piles with Hybrid Reinforcement under Influence of Prestressed Control Level and Hybrid Reinforcement[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230393
Citation: JIA Hongyu, XIAO Chuzhao, KANG Wei, WANG Chuanqi, ZHENG Shixiong. Review of Research on Vulnerability of Transportation Infrastructure to Extreme Climatic Conditions[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 484-502. doi: 10.3969/j.issn.0258-2724.20230650

极端气候下交通基础设施脆弱性研究综述

doi: 10.3969/j.issn.0258-2724.20230650
基金项目: 国家自然科学基金项目(52178169)
详细信息
    作者简介:

    贾宏宇(1981—),男,副教授,博士生导师,研究方向为桥梁抗震,E-mail:Hongyu1016@swjtu.edu.cn

    通讯作者:

    郑史雄(1965—),男,教授,博士生导师,研究方向为桥梁抗风与抗震,E-mail:Zhengsx@swjtu.edu.cn

  • 中图分类号: TU99;P429

Review of Research on Vulnerability of Transportation Infrastructure to Extreme Climatic Conditions

  • 摘要:

    全球气候变化日益剧烈,极端强降水、高温、低温以及干旱等极端气候事件对现有交通基础设施的运行性能造成影响,甚至导致严重损坏. 与此同时,随着交通强国战略的深入实施,大量新的交通基础设施在恶劣环境中被建设,新建设施的功能性、耐久性和维护管理面临前所未有的挑战. 极端气候荷载变化迅速且难以预测,常常伴随多种灾害的耦合效应,使得交通基础设施在其作用下的破坏机理极为复杂. 为确保极端气候条件下交通基础设施的安全和效能,在国内外极端气候及多灾害耦合研究的基础上,系统梳理了极端气候的时空演变、多灾害耦合作用的研究历程以及多重灾害对工程结构的影响机理. 在此基础上,明确了极端气候影响的特性,并提出交通基础设施在设计、施工和维护阶段的防灾减灾设计原则. 同时,综合总结了在极端气候条件下交通基础设施的多灾害风险评估方法,并对未来的研究方向进行展望,指出利用人工智能和机器学习技术进行极端气候灾害的快速预测和评估,以及在全寿命周期内分析交通基础设施系统性能的变化将成为重要的发展趋势. 为桥梁、道路和隧道等交通基础设施在极端气候条件下的抗灾设计、性能评估和韧性提升提供了宝贵的参考.

     

  • 随着基坑工程建设的不断发展,为确保其安全修建,在进行基坑支护时预应力高强度混凝土(PHC)管桩被广泛采用,但相关监测数据显示,PHC管桩由于延性差,在水平荷载作用下常因结构受弯承载力不足而出现桩身开裂、倾斜及断桩等质量缺陷[1-3],所以对于其抗弯性能的研究是非常必要的. 鉴于此,延性及耐久性更好的混合配筋预应力混凝土(PRC)管桩在基坑工程建设中被进一步推广应用[4-5]. PRC管桩主要通过在高强度混凝土中混合配置高强度、低松弛率的预应力钢筋和非预应力钢筋,使其具有较大的水平抗弯、抗拉能力,同时延性和抗震性等也有所提高,在实际工程应用场景中,桩体主要承受弯矩、剪力等外荷载作用,其中抗弯性能尤为重要[6-8]. 然而,由于不同预应力控制水平、混合配筋等多因素的影响作用下PRC管桩实际抗弯承载力与理论设计值仍存在偏差,致使其服役过程中存在桩身破坏或性能退化等潜在风险. 因此,PRC管桩抗弯承载能力研究对岩土工程安全修建具有重要的理论指导与实际工程意义.

    目前,国内外学者针对PRC管桩的抗弯性能开展了大量研究. 试验研究方面,众多学者开展了预应力混凝土管桩的抗弯性能对比试验:王新玲等[9-13]研究非预应力钢筋的配置对混合配筋预应力混凝土管桩抗弯承载性能的影响,发现配置非预应力钢筋可明显提高预应力混凝土管桩的抗弯承载力和延性,对控制抗弯裂缝的开展有明显的效果;张忠苗等[14]通过试验得出钢筋加强型预应力混凝土管桩中,非预应力螺纹钢筋的配置较大幅度改善了预应力混凝土管桩的抗弯性能,且预应力钢筋配筋率越低效果越明显,但抗裂性能没有明显提高;朱俊涛等[15]分析预应力钢棒和高强钢筋不同张拉控制应力对混合配筋混凝土管桩抗弯性能的影响,结果表明,随着预应力钢棒预拉应力的降低,试件的延性系数逐渐增大,而对应的开裂弯矩逐渐减小,但对承载力影响较小;刘凯等[16]分析超高强混凝土(C105)和非预应力钢筋配置等对PRC管桩受弯性能的影响发现,混凝土强度等级对管桩的开裂弯矩和极限弯矩均有影响,随着混凝土强度提高,试件的整体刚度明显提升,PRC管桩抗弯承载力随非预应力钢筋配筋率的提高而增大;刘永超等[17]针对区段复式配筋预应力管桩开展抗弯试验,总结得出了其桩身裂缝形态、挠度曲线、弯矩等变化规律. 数值模拟方面:王新玲等[18-19]等对复合配筋预应力混凝土管桩的抗弯刚度进行了计算分析发现,复合配筋预应力管桩较普通的预应力管桩具有更好的抗弯承载力、延性及耐久性;朱俊涛等[15]对预应力混凝土管桩进行数值模拟表明,降低预应力钢棒的预拉应力值能够明显提高试件的延性,但对试件的抗弯承载力影响较小;傅传国等[20]提出了火灾情况下预应力型钢混凝土梁抗弯承载力计算方法;李福海等[21]总结了聚丙烯纤维水泥基梁的抗弯承载力变化规律.

    上述研究中,桩身的破裂形态、挠度曲线、弯矩等变化状况是抗弯承载性能研究的关注重点,通过获取上述性能指标的变化规律,可帮助认识桩身工作状态演化规律. 越来越多的工程场景需要用到混合配筋预应力混凝土管桩,其破坏形式受预应力水平、桩身配筋、端板厚度、焊缝质量、预应力钢筋锚固等多个因素控制,但预应力控制水平、混合配筋等因素对PRC桩身抗弯性能影响的研究内容较少. 针对上述问题,本文通过开展多因素影响PRC管桩抗弯载荷试验,获取混合配筋比、预应力水平等因素影响下抗弯性能演化规律,为PRC桩工艺设计及工程应用提供参考.

    参照《先张法预应力混凝土管桩》(GB 13476—2009)[22]开展PRC管桩抗弯性能承载试验,试验加载装置如图1所示. 荷载由500 kN同步液压千斤顶产生,门式反力架提供荷载支承. 压力传感器布置于千斤顶上方,用于测量并控制加载值. 3个百分表分别位于加载点下方及跨中,用于测量挠度. 为确保测量准确性,试验过程中增加水准仪进行辅助测量及抄测卸载后的残余变形.

    图  1  PRC管桩抗弯承载试验示意
    Figure  1.  Flexural bearing test of PRC pipe piles

    采用单调连续加载的方式进行加载. 先按照理论抗裂弯矩的20%的级差由0加载至抗裂弯矩的80%,每级荷载的持续时间为3 min;再按照抗裂弯矩的10%的级差加载至抗裂弯矩的100%. 观察是否有裂缝出现,并测定和记录裂缝宽度. 如果达到抗裂弯矩的100%时仍未出现裂缝,则按抗裂弯矩的5%的级差加载至裂缝出现,随后按极限弯矩的5%的级差继续加载直至试验桩破坏,具体表现为受拉区预应力钢筋拉断或受压区混凝土压碎.

    本研究共设计5种PRC圆形管桩,桩长为9 000 mm,桩身外径500 mm,壁厚100 mm,基本情况如表1所示. 为研究张拉控制比例的影响,PRC1~PRC3号桩预应力张拉控制比例分别设置为0.3、0.5、0.7,其余参数保持一致. 为研究混合配筋的影响,PRC4、PRC5号桩预应力张拉控制比例为0.5,其中PRC4桩非预应力钢筋不参与预应力贡献,桩身混凝土强度等级为C60,预应力钢棒直径为10.7 mm(抗拉强度为1 420 MPa),根数为12根,非预应力钢筋直径为12.0 mm的HRB400级钢筋,根数为12根,二者等间距分布.

    表  1  试件基本情况
    Table  1.  Specimen basic information
    试件编号 外径/mm 壁厚/mm 长度/mm 张拉控制比例 非预应力钢筋贡献
    PRC1 500 100 9 000 0.3
    PRC2 0.5
    PRC3 0.7
    PRC4 0.5
    PRC5 0.5
    下载: 导出CSV 
    | 显示表格

    初始阶段构件处于弹性工作阶段跨,中弯矩随荷载增加线性增大尚无裂缝产生;当在跨中底部受拉区出现第一条垂直裂缝时,构件进入屈服阶段,随着荷载增加,该裂缝不断延伸同时产生更多裂缝;达到极限状态后,桩身顶部受压区出现压碎破坏,不同PRC管桩桩身开裂情况如图2所示.

    图  2  不同PRC管桩桩身裂隙分布示意
    Figure  2.  Crack distribution on different PRC pipe piles

    桩身裂缝情况及弯曲延性情况如表2所示,表中,延性系数等于破坏位移与屈服位移之比. 根据表中数据可知:初始预应力水平越高桩身裂缝越少,混合配筋对裂缝数量影响较小,裂缝宽度越大桩身延性系数越大;初始预应力水平为0.5倍张拉力时,延性系数最大;当非预应力钢筋参与贡献时桩的延性更好.

    表  2  桩身裂缝及弯曲延性情况统计
    Table  2.  Statistics of pile body cracks and ductility
    桩身编号 裂缝数量/根 最大裂缝宽度/mm 延性系数 μ
    PRC1 25 0.90 6.8
    PRC2 22 0.95 8.5
    PRC3 18 0.75 5.5
    PRC4 27 1.05 10.6
    PRC5 27 1.50 13.6
    下载: 导出CSV 
    | 显示表格

    不同初始预应力的3种PRC管桩的弯矩-挠度曲线如图3所示:加载过程中,曲线均存在明显的线性弹性特征以及屈服台阶弹塑性特征;在弯矩小于100 kN•m时,PRC2与PRC3的弯矩-挠度曲线基本重合,随着受拉区混凝土的开裂,两曲线逐渐分离;初始施加预应力越大的试件弹性变形段越长,裂缝出现越靠后,相同挠度情况下弯矩水平越高. 分析认为,在荷载变形过程中预应力钢筋率先工作,而初始预应力水平越高的试件桩身整体弹性阶段越长,裂缝出现越晚.

    图  3  不同初始预应力工况下PRC桩跨中弯矩-挠度曲线
    Figure  3.  Bending moment-deflection curve in midspan of PRC pipe piles under initial prestress condition

    混合配筋对PRC管桩的跨中弯矩-挠度曲线影响规律如图4所示:PRC4和PRC5的变形曲线在弯矩为200 kN•m以内时基本重合,随着受拉区混凝土的开裂,两曲线出现分离现象. 分析认为,非预应力钢筋的协同贡献作用不同,PC钢棒和螺纹钢同时张拉的构件变形相对趋缓,延性更好,表现出良好的韧性.

    图  4  PRC4及PRC5桩跨中弯矩-挠度曲线
    Figure  4.  Bending moment-deflection curves in midspan of PRC4 and PRC5 pipe piles

    图5所示:随着荷载增加,当弯矩达到开裂弯矩点时桩身开始出现裂缝,此时对应的弯矩Mcr为开裂弯矩,开裂挠度记作fue;荷载进一步增加时,弯矩超过构件极限承载弯矩出现破坏,此时对应的弯矩用Mu0(极限弯矩),极限挠度记作fu0.

    图  5  抗弯承载力与挠度关系曲线
    Figure  5.  Relationship between flexural bearing capacity and deflection

    针对以上2种弯矩,不同桩的弯矩承载力对比情况如图6所示. 由图6(a)可知,张拉控制比例增大时,开裂弯矩显著增大,而极限弯矩则呈现先增大后减小的趋势,甚至PRC3号桩的极限弯矩小于PRC1号桩. 由图6(b)可知,非预应力钢筋参与受荷贡献对于桩身弯矩承载能力影响较小,PRC4与PRC5号桩弯矩承载力较为接近. 分析认为,桩身预应力水平越高达到屈服阶段越晚,开裂弯矩也就越大,桩身破坏时极限弯矩与桩身在高应力水平下整体变形相关,因此,与预应力水平并非呈现正相关,初始预应力为0.5倍张拉力时极限弯矩最大.

    图  6  不同桩弯矩承载力对比
    Figure  6.  Comparison of bending moment capacities of different piles

    桩的挠度对比情况如图7所示,由图7(a)可知,张拉控制比例不同时,0.5倍张拉预应力情况下开裂挠度最小,而极限挠度则随着张拉控制比例的增加显著减小. 由图7(b)可知,非预应力钢棒参与受荷贡献对于桩身开裂挠度影响较小,而极限挠度则随着非预应力钢棒参与预应力贡献显著增大. 分析认为,桩身开裂挠度反应了桩身出现裂缝时的变形程度,与初始预应力水平关系较小,极限挠度反映了桩身破坏时桩身变形情况,初始预应力水平越高桩身发生破坏时的变形程度越小,非预应力钢棒参与受荷贡献时,由于其延性更好极限挠度越大.

    图  7  不同桩挠度对比
    Figure  7.  Comparison of deflections of different piles

    不同荷载作用下桩身变形曲线如图8所示. 由PRC1~PRC3号桩身变形曲线可知:管桩构件开裂以前,荷载值较小,构件的变形也很小,挠度沿纵向变化很小,即挠度增加缓慢,且跨中纯弯段变形基本相等,曲线呈U型发展;荷载加至开裂荷载后,跨中变形值增加速率加快,随着荷载的继续增加,构件进入破坏阶段,跨中变形值的增加速率继续增加,最终破坏时荷载-变形曲线基本呈V型;图8(b)曲线为PRC2桩在塑性阶段及破坏阶段,跨中纯弯段3个百分表变形差异较小,表明构件正截面受拉区高度相对较小,受压区高度相对较大,属于超筋截面破坏,正截面承载力由受压区混凝土控制,故其承载力相对较高,也验证了试验测试结果;对比PRC1~PRC3号桩身变形曲线可知,PRC2号桩曲线斜率相对较小,其延性最好.

    图  8  不同荷载共况下桩身变形曲线
    Figure  8.  Pile body deformation under different loading conditions

    由PRC4、PRC5号桩桩身变形曲线可以看出,桩身在经历开裂至破坏变形阶段变形曲线与PRC1~PRC3号桩曲线形态一致,随着荷载增加,桩身曲线形态逐渐由U型向V型转变. 对比两者变形曲线可知,非预应力钢棒参与受荷贡献时,其弯曲延性更好,PRC5号桩变形曲线更缓.

    将试验所测得数据与已有规范中相关弯矩承载力所规定的理论计算值进行对比. 开裂弯矩的计算参照《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]中有关规定进行,极限弯矩的计算理论值1参照《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]有关规定进行计算,理论值2参照《先张法预应力混凝土管桩》(GB 13476—2009)[22]有关规定进行计算,相关计算方法如式(1)~(3)所示.

    1) 开裂弯矩计算公式

    Mcr=(σpc+kftk)W0
    (1)

    式中:σpc为管桩横截面承受的压应力;k为考虑工艺和截面抵抗矩塑性影响的综合系数;ftk为混凝土轴心抗拉强度标准值;W0为截面换算弹性抵抗矩.

    2) 极限弯矩计算公式

    理论值1:

    Mu1=α1fckA(r1+r2)sinπα2π+fpyApDpsinπα2π+(fptkσp0)ApDpsinπαt2π+fykAsDs(sinπα+sinπαt)2π
    (2)

    理论值2:

    Mu2=α1fckA(r1+r2)sinπα2π+fpyApDpsinπα2π+(fptkσp0)ApDpsinπαt2π+σsAsDs(sinπα+sinπαt)2π
    (3)

    式(2)、(3)中:α1为受压区应力与抗压强度设计值比值;A为桩身横截面面积;Ap为预应力钢筋截面面积;r1r2分别为管桩桩身环形截面内、外半径;Dp为预应力钢筋所在圆周直径;α为受压区混凝土面积与全截面面积之比;αt为受拉区纵向预应力钢筋与全部预应力钢筋面积之比;fptk为预应力钢筋强度标准值;fck为混凝土轴心抗压强度标准值;fpy为预应力钢筋抗压强度设计值;σp0为预应力钢筋合力点处混凝土法向应力等于0时的预应力钢筋应力;σs为普通钢筋应力;As为普通钢筋截面面积;Ds 为普通钢筋圆周直径.

    开裂弯矩理论计算值与实测值对比结果如表3所示,不同预应力PRC桩开裂弯矩实测值为理论值的1.25~1.50倍. 具体如下:PRC1的开裂弯矩实测值约为计算值的1.50倍,PRC2和PRC3的开裂弯矩实测值约为计算值的1.25倍,PRC4和PRC5实测值约为计算值的1.38倍;初始预应力较低情况下,相对误差较大可达50%,随着初始预应力的增高,误差逐渐减小. 可见在初始预应力较低情况下,现行规范中PRC管桩开裂弯矩计算方法偏于保守,低估了PRC管桩的实际承载能力.

    表  3  开裂弯矩理论与实测值对比结果
    Table  3.  Comparison of theoretical and measured cracking moments
    桩身编号 初始预应力比例 理论值(KN·m) 实测值(KN·m) 实测值/计算值
    PRC1 0.3 98.1 146.5 1.50
    PRC2 0.5 121.6 154.5 1.28
    PRC3 0.7 145.2 181.6 1.25
    PRC4 0.5 119.3 149.3 1.39
    PRC5 0.5 119.3 149.5 1.37
    下载: 导出CSV 
    | 显示表格

    极限弯矩理论计算值与实测值对比结果如表4所示. 由表可以看出:5种PRC管桩极限弯矩实测值均大于理论值1,实测值与理论值2较为接近,其中,PRC3号桩小于理论值2;实测值与理论值对比可知,《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]中有关规定进行的极限弯矩理论计算值偏于保守,未能充分发挥管桩的实际承载性能,初始预应力为0.50倍张拉力的PRC3号桩实测值可达理论值的1.17倍,而考虑混合配筋影响的PRC4、PRC5号桩的极限弯矩实测值可达该规范中理论值的1.30倍以上;《先张法预应力混凝土管桩》(GB 13476—2009)[22]中极限弯矩的理论计算方法与实测值较为接近,不同管桩二者比值在0.96~1.07,可满足工程设计施工计算要求.

    表  4  极限弯矩理论与实测比较
    Table  4.  Comparison of theoretical and measured ultimate bending moments
    构件 初始预应力比例 实测值/
    (KN·m)
    理论值 1/
    (KN·m)
    理论值 2/
    (KN·m)
    PRC1 0.3 355 310 354
    PRC2 0.5 375 320 360
    PRC3 0.7 349.5 330 363
    PRC4 0.5 420.2 307 392
    PRC5 0.5 409.8 307 392
    下载: 导出CSV 
    | 显示表格

    1) PRC桩破坏形式为典型的弹塑性构件破坏形态,混合配筋方式提高了桩身承载力及延性. 破坏时弯曲变形延性大于5.5,跨度为6.2 m时最大挠度大于48 mm,破坏时裂缝宽度小于1 mm;破坏时弯曲变形延性大于10,跨度为5.4 m时最大挠度大于54 mm,破坏时裂缝宽度为1.05~1.50 mm.

    2) 开裂弯矩随着施加预应力值的增大而逐渐增大,极限挠度随着施加预应力值的增大而逐渐减小. 在初始预应力为0.50倍张拉力时试件的延性最好. 非预应力钢筋参与受荷贡献对于桩身弯矩承载能力影响较小,而极限挠度则随着非预应力钢棒参与预应力贡献显著增大.

    3) 管桩构件开裂以前,随荷载增加,挠度增加缓慢,且跨中纯弯段变形基本相等,曲线呈U型发展. 荷载加至开裂荷载后,跨中变形值增加速率加快,随着荷载的继续增加,构件进入破坏阶段,跨中变形值的增加速率继续增加,最终破坏时荷载变形曲线基本呈V型.

    4) 不同预应力PRC桩开裂弯矩实测值为《混合配筋预应力混凝土管桩》(DBJT19-34—2009)中有关规定理论值的1.25~1.50倍. 5种PRC管桩极限弯矩实测值均大于《混合配筋预应力混凝土管桩》(DBJT19-34—2009)中有关规定理论值,实测值与《先张法预应力混凝土管桩》(GB 13476—2009)理论值较为接近,二者比值在0.96~1.07,可满足工程设计施工计算要求.

  • 图 1  长江流域极端气候事件危险性等级(198l—2010年)[5]

    Figure 1.  Risk level of extreme climatic events in Yangtze River Basin (198l–2010)[5]

    图 2  极端气候对交通基础设施的影响

    Figure 2.  Impacts of extreme climates on transportation infrastructure

    图 3  长江流域极端气候事件年变化率(196l—2020年)[5]

    Figure 3.  Annual change rate of extreme climatic events in Yangtze River Basin (1961–2020)[5]

    图 4  缺陷桥梁适应气候变化的成本

    Figure 4.  Cost of climate change adaptation for defective bridges

    图 5  极端气候事件引起的生命损失

    Figure 5.  Loss of life due to extreme climatic events

    图 6  暴雨导致Hatchie River 桥梁冲刷破坏

    Figure 6.  Erosion damage to Hatchie River Bridge caused by heavy rain

    图 7  飓风桑迪引起公路和桥梁破坏

    Figure 7.  Damage to roads and bridges caused by hurricane Sandy

    图 8  特大暴雨引起石太铁路桥梁垮塌

    Figure 8.  Collapse of Shijiazhuang-Taiyuan Railway Bridge caused by heavy rain

    图 9  多灾害风险矩阵

    Figure 9.  Multi-disaster risk matrix

    图 10  台风灾害桥梁设计风险矩阵

    Figure 10.  Risk matrix of bridge design in typhoon disaster

    图 11  极端气候灾害时空分布

    Figure 11.  Spatiotemporal distribution of extreme climatic disasters

    图 12  气候多灾害评估量化步骤

    Figure 12.  Quantitative steps of climatic multi-disaster assessment

    图 13  冲刷主动防护措施[79]

    Figure 13.  Active protection measures for erosion[79]

    图 14  冲刷被动防护措施[79]

    Figure 14.  Passive protection measures for erosion[79]

    图 15  基于时变风险模型的概率密度函数与风险重现区间的关系[54]

    Figure 15.  Relationship between probability density function and risk recurrence interval based on time-varying risk model[54]

    图 16  全寿命周期内性能预测

    Figure 16.  Performance prediction during whole life cycle

    图 17  最优Copula函数步骤

    Figure 17.  Steps for optimal Copula function

    图 18  风险曲线主要流程

    Figure 18.  Main process of risk curve calculation

    图 19  风险评估框架主要流程

    Figure 19.  Main process of risk assessment framework

    图 20  技术路线

    Figure 20.  Technology roadmap

    图 21  中国典型灾害地区分布[67]

    Figure 21.  Distribution of typical disaster areas in China[67]

    表  1  未来中国年平均地表气温与降水量(相对1961—1990年平均值)

    Table  1.   Annual average surface temperature and precipitation in China in the future (relative to average value in 1961–1990)

    年份 温度变化/℃ 降水变化%
    2020 年 1.3~2.1 2~3
    2030 年 1.5~2.8
    2050 年 2.3~3.3 5~7
    2100 年 3.9~6.0 11~17
    下载: 导出CSV
  • [1] 丁一汇,任国玉,石广玉,等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势[J]. 气候变化研究进展,2006,2(1): 3-8.

    DING Yihui, REN Guoyu, SHI Guangyu, et al. National assessment report of climate change (Ⅰ): climate change in China and its future trend[J]. Climate Change Research, 2006, 2(1): 3-8.
    [2] 杨肖丽,马慧君,吴凡,等. 基于CMIP6的全球及干旱带干旱时空演变[J]. 水资源保护,2023,39(2):40-49.

    YANG Xiaoli, MA Huijun, WU Fan, et al. Spatiotemporal evolution of global and arid zone drought based on CMIP6[J]. Water Resources Protection, 2023, 39(2):40-49.
    [3] HU Q, TANG Z H, ZHANG L, et al. Evaluating climate change adaptation efforts on the US 50 states’ hazard mitigation plans[J]. Natural Hazards, 2018, 92(2):783-804.
    [4] WRIGHT L, CHINOWSKY P, STRZEPEK K, et al. Estimated effects of climate change on flood vulnerability of U. S. bridges[J]. Mitigation and Adaptation Strategies for Global Change, 2012, 17(8): 39-955.
    [5] 张存杰,肖潺,李帅,等. 极端气候事件综合危险性等级指标构建及近60年来长江流域极端气候综合分析[J]. 地球物理学报,2023,66(3): 920-938. doi: 10.6038/cjg2022Q0255

    ZHANG Cunjie, XIAO Chan, LI Shuai, et al. Construction of multi-extreme climate events composite grads index and comprehensive analysis of extreme climate in the Yangtze River Basin from 1961 to 2020[J]. Chinese Journal of Geophysics, 2023, 66(3): 920-938. doi: 10.6038/cjg2022Q0255
    [6] TORRESAN S, CRITTO A, RIZZI J, et al. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea[J]. Natural Hazards and Earth System Sciences, 2012, 12(7): 2347-2368. doi: 10.5194/nhess-12-2347-2012
    [7] BARBATO M, PETRINI F, UNNIKRISHNAN V U, et al. Performance-Based Hurricane Engineering (PBHE) framework[J]. Structural Safety, 2013, 45: 24-35. doi: 10.1016/j.strusafe.2013.07.002
    [8] 张喜刚,田雨,陈艾荣. 多灾害作用下桥梁设计方法研究综述[J]. 中国公路学报,2018,31(9): 7-19. doi: 10.3969/j.issn.1001-7372.2018.09.002

    ZHANG Xigang, TIAN Yu, CHEN Airong. Review of bridge design method for multiple hazards[J]. China Journal of Highway and Transport, 2018, 31(9): 7-19. doi: 10.3969/j.issn.1001-7372.2018.09.002
    [9] GALLINA V, TORRESAN S, CRITTO A, et al. A review of multi-risk methodologies for natural hazards: consequences and challenges for a climate change impact assessment[J]. Journal of Environmental Management, 2016, 168: 123-132.
    [10] 李宏男,李钢,郑晓伟,等. 工程结构在多灾害耦合作用下的研究进展[J]. 土木工程学报,2021,54(5): 1-14.

    LI Hongnan, LI Gang, ZHENG Xiaowei, et al. Research progress in engineering structures subject to multiple hazards[J]. China Civil Engineering Journal, 2021, 54(5): 1-14.
    [11] 王元丰,韩冰. 极端气候事件对桥梁安全性的影响分析[J]. 土木工程学报,2009,42(3): 76-80. doi: 10.3321/j.issn:1000-131X.2009.03.013

    WANG Yuanfeng, HAN Bing. Influences of extreme climate events on bridges[J]. China Civil Engineering Journal, 2009, 42(3): 76-80. doi: 10.3321/j.issn:1000-131X.2009.03.013
    [12] 王芸,赵鹏祥. 黄河流域极端气候事件的时空变异特征研究[J]. 西北林学院学报,2021,36(3): 190-196. doi: 10.3969/j.issn.1001-7461.2021.03.28

    WANG Yun, ZHAO Pengxiang. Temporal and spatial variation characteristics of extreme climate events in the Yellow River Basin[J]. Journal of Northwest Forestry University, 2021, 36(3): 190-196. doi: 10.3969/j.issn.1001-7461.2021.03.28
    [13] CHOWDHURY M A, ZZAMAN R U, TARIN N J, et al. Spatial variability of climatic hazards in Bangladesh[J]. Natural Hazards, 2022, 110(3): 2329-2351 doi: 10.1007/s11069-021-05039-3
    [14] HUSSAIN M A, ZHANG S, MUNEER M, et al. Assessing and mapping spatial variation characteristics of natural hazards in Pakistan[J]. Land, 2022, 12(1): 1-40. doi: 10.3390/land12010001
    [15] ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D05109.1-D05109.22
    [16] KUNKEL K E, KARL T R, EASTERLING D R, et al. Probable maximum precipitation and climate change[J]. Geophysical Research Letters, 2013, 40(7): 1402-1408. doi: 10.1002/grl.50334
    [17] FISCHER E M, SIPPEL S, KNUTTI R. Increasing probability of record-shattering climate extremes[J]. Nature Climate Change, 2021, 11: 689-695. doi: 10.1038/s41558-021-01092-9
    [18] MARTINEZ-VILLALOBOS C, NEELIN J D. Regionally high risk increase for precipitation extreme events under global warming[J]. Scientific Reports, 2023, 13: 5579.1-5579.14.
    [19] 曹永旺,延军平. 1961—2013年山西省极端气候事件时空演变特征[J]. 资源科学,2015,37(10): 2086-2098.

    CAO Yongwang, YAN Junping. Temporal and spatial analysis of extreme climatic events in Shanxi Province from 1961 to 2013[J]. Resources Science, 2015, 37(10): 2086-2098.
    [20] 曹永强,袁立婷,郑爽,等. 近50年辽宁省极端气候事件的趋势变化及空间特征[J]. 水利水电技术,2018,49(7): 45-53.

    CAO Yongqiang, YUAN Liting, ZHENG Shuang, et al. Trend variation and spatial characteristics of extreme climate events in Liaoning Province in recent 50 years[J]. Water Resources and Hydropower Engineering, 2018, 49(7): 45-53.
    [21] 柴素盈,曹言,窦小东,等. 1964—2017年南盘江流域主要极端气候事件时空演变特征[J]. 水土保持研究,2020,27(1): 151-160.

    CHAI Suying, CAO Yan, DOU Xiaodong, et al. Analysis temporal and spatial changes of extreme climatic events in nanpan river basin from 1964 to 2017[J]. Research of Soil and Water Conservation, 2020, 27(1): 151-160.
    [22] 杨晨,董晓华,董立俊,等. 雅砻江流域1961—2018年极端气候时空演变研究[J]. 中国农村水利水电,2023(2): 46-56,65.

    YANG Chen, DONG Xiaohua, DONG Lijun, et al. Research on the temporal and spatial evolution of extreme climate in the yalong river basin from 1961 to 2018[J]. China Rural Water and Hydropower, 2023(2): 46-56,65.
    [23] BRUNETTI M, MAUGERI M, NANNI T. Changes in total precipitation, rainy days and extreme events in northeastern Italy[J]. International Journal of Climatology, 2001, 21(7): 861-871. doi: 10.1002/joc.660
    [24] BOO K O, KWON W T, BAEK H J. Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change[J]. Geophysical Research Letters, 2006, 33: L01701.1-L01701.4
    [25] STEVENS L E, MAYCOCK T K, STEWART B C. Climate change in the human environment: indicators and impacts from the Fourth National Climate Assessment[J]. Journal of the Air & Waste Management Association, 2021, 71(10):1210-1233.
    [26] ARNELL N W, GOSLING S N. The impacts of climate change on river flood risk at the global scale[J]. Climatic Change, 2016, 134(3): 387-401. doi: 10.1007/s10584-014-1084-5
    [27] FREI C, SCHÖLL R, FUKUTOME S, et al. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D06105.1-D06105.22.
    [28] HAHN M B, RIEDERER A M, FOSTER S O. The livelihood vulnerability index: a pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique[J]. Global Environmental Change, 2009, 19(1): 74-88. doi: 10.1016/j.gloenvcha.2008.11.002
    [29] ROBINE J M, CHEUNG S L K, LE ROY S, et al. Death toll exceeded 70, 000 in Europe during the summer of 2003[J]. Comptes Rendus Biologies, 2008, 331(2): 171-178.
    [30] STEWART S R. Eastern north pacific hurricanes 2010: flooding in a slow season[J]. Weatherwise, 2011, 64(3): 38-45. doi: 10.1080/00431672.2011.566819
    [31] 王志军,李福普. 基于风险矩阵的极端气候因素对沥青混凝土路面的影响分析[J]. 公路,2014,59(7): 56-60.

    WANG Zhijun, LI Fupu. Analysis of impact on extreme climate factors to asphalt pavement based on risk matrix[J]. Highway, 2014, 59(7): 56-60.
    [32] 王林波. 极端气候对城市道路路面结构影响分析[J]. 内蒙古公路与运输,2018(1): 40-42.

    WANG Linbo. Analysis of the influence of extreme climate on urban road pavement structure[J]. Highways & Transportation in Inner Mongolia, 2018(1): 40-42.
    [33] BIXLER R P, YANG E, RICHTER S M, et al. Boundary crossing for urban community resilience: a social vulnerability and multi-hazard approach in Austin, Texas, USA[J]. International Journal of Disaster Risk Reduction, 2021, 66: 102613.1-102613.9.
    [34] WARD P J, BLAUHUT V, BLOEMENDAAL N, et al. Review article: natural hazard risk assessments at the global scale[J]. Natural Hazards and Earth System Sciences, 2020, 20(4): 1069-1096. doi: 10.5194/nhess-20-1069-2020
    [35] ZHANG W, VILLARINI G. Deadly compound heat stress-flooding hazard across the central United States[J]. Geophysical Research Letters, 2020, 47(15): 1-7.
    [36] TEPPER F. The Sendai framework for disaster risk reduction and persons with disabilities[J]. International Journal of Disaster Risk Science, 2015, 6(2): 140-149. doi: 10.1007/s13753-015-0051-8
    [37] SANTINI M, CACCAMO G, LAURENTI A, et al. A multi-component GIS framework for desertification risk assessment by an integrated index[J]. Applied Geography, 2010, 30(3): 394-415. doi: 10.1016/j.apgeog.2009.11.003
    [38] LIANG Z, LEE G C. Bridge pier failure probabilities under combined hazard effects of scour, truck and earthquake. part I: occurrence probabilities[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(2): 229-240. doi: 10.1007/s11803-013-0166-0
    [39] LIANG Z, LEE G C. Towards establishing practical multi-hazard bridge design limit states[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(3): 333-340. doi: 10.1007/s11803-013-0175-z
    [40] KAPPES M S, KEILER M, VON ELVERFELDT K, et al. Challenges of analyzing multi-hazard risk: a review[J]. Natural Hazards, 2012, 64(2): 1925-1958. doi: 10.1007/s11069-012-0294-2
    [41] CHEN L, SINGH V P, GUO S L, et al. Flood coincidence risk analysis using multivariate copula functions[J]. Journal of Hydrologic Engineering, 2012, 17(6): 742-755. doi: 10.1061/(ASCE)HE.1943-5584.0000504
    [42] 秦佩瑶. 地震与洪水联合作用下结构抗多灾分析与设防水准研究[D]. 大连:大连理工大学,2021.
    [43] SHIEH C L, CHEN Y S, TSAI Y J, et al. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China[J]. International Journal of Sediment Research, 2009, 24(2): 177-188. doi: 10.1016/S1001-6279(09)60025-1
    [44] XU L F, MENG X W, XU X G. Natural hazard chain research in China: a review[J]. Natural Hazards, 2014, 70(2): 1631-1659. doi: 10.1007/s11069-013-0881-x
    [45] 门可佩,高建国. 重大灾害链及其防御[J]. 地球物理学进展,2008,23(1): 270-275.

    MEN Kepei, GAO Jianguo. Severe disaster chain and its defense[J]. Progress in Geophysics, 2008, 23(1): 270-275.
    [46] 周靖,马石城,赵卫锋. 城市生命线系统暴雪冰冻灾害链分析[J]. 灾害学,2008,23(4): 39-44. doi: 10.3969/j.issn.1000-811X.2008.04.009

    ZHOU Jing, MA Shicheng, ZHAO Weifeng. Analysis on disaster chains of urban lifeline system in heavy snow-freezing weather[J]. Journal of Catastrophology, 2008, 23(4): 39-44. doi: 10.3969/j.issn.1000-811X.2008.04.009
    [47] KOMENDANTOVA N, MRZYGLOCKI R, MIGNAN A, et al. Multi-hazard and multi-risk decision-support tools as a part of participatory risk governance: feedback from civil protection stakeholders[J]. International Journal of Disaster Risk Reduction, 2014, 8: 50-67. doi: 10.1016/j.ijdrr.2013.12.006
    [48] MARASCO S, ZAMANI NOORI A, CIMELLARO G P. Cascading hazard analysis of a hospital building[J]. Journal of Structural Engineering, 2017, 143(9): 04017100.1-04017100.15.
    [49] GILL J C, MALAMUD B D. Reviewing and visualizing the interactions of natural hazards[J]. Reviews of Geophysics, 2014, 52(4): 680-722. doi: 10.1002/2013RG000445
    [50] GIDARIS I, PADGETT J E, BARBOSA A R, et al. Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: state-of-the-art review[J]. Journal of Structural Engineering, 2017, 143(3): 04016188.1-04016188.17.
    [51] TAYLOR Z, STOYANOFF S, DALLAIRE P O, et al. Aerodynamics of long-span bridges: susceptibility to snow and ice accretion[J]. Journal of Structural Engineering, 2017, 143(7): 04017039.1-04017039.11.
    [52] CHOE D E, GARDONI P, ROSOWSKY D. Fragility increment functions for deteriorating reinforced concrete bridge columns[J]. Journal of Engineering Mechanics, 2010, 136(8): 969-978. doi: 10.1061/(ASCE)EM.1943-7889.0000147
    [53] GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2010, 136(12): 1497-1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
    [54] DONG Y, FRANGOPOL D M. Probabilistic time-dependent multihazard life-cycle assessment and resilience of bridges considering climate change[J]. Journal of Performance of Constructed Facilities, 2016, 30(5): 04016034.1-04016034.12.
    [55] SALMAN A M, LI Y. Multihazard risk assessment of electric power systems[J]. Journal of Structural Engineering, 2017, 143(3): 04016198.1-04016198.14.
    [56] 孔锋. 透视大尺度综合自然灾害风险评估的主要进展和展望[J]. 灾害学,2020,35(2): 148-153. doi: 10.3969/j.issn.1000-811X.2020.02.027

    KONG Feng. Perspective on the main progress and prospect of large-scale comprehensive natural disaster risk assessment[J]. Journal of Catastrophology, 2020, 35(2): 148-153. doi: 10.3969/j.issn.1000-811X.2020.02.027
    [57] MARIN G, MODICA M, PALEARI S, et al. Assessing disaster risk by integrating natural and socio-economic dimensions: a decision-support tool[J]. Socio-Economic Planning Sciences, 2021, 77: 101032.1-101032.13.
    [58] GRÜNTHAL G, THIEKEN A H, SCHWARZ J, et al. Comparative risk assessments for the city of cologne—storms, floods, earthquakes[J]. Natural Hazards, 2006, 38(1): 21-44.
    [59] DI MAURO D, LEPIDI S, DI PERSIO M, et al. Update on monitoring of magnetic and electromagnetic tectonic signals in Central Italy[J]. Annals of Geophysics, 2009, 50(1): 51-60.
    [60] MARZOCCHI W, NEWHALL C, WOO G. The scientific management of volcanic crises[J]. Journal of Volcanology and Geothermal Research, 2012, 247/248: 181-189. doi: 10.1016/j.jvolgeores.2012.08.016
    [61] MIGNAN A, WIEMER S, GIARDINI D. The quantification of low-probability—high-consequences events: part I. a generic multi-risk approach[J]. Natural Hazards, 2014, 73(3): 1999-2022. doi: 10.1007/s11069-014-1178-4
    [62] KAPPES M S, GRUBER K, FRIGERIO S, et al. The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool[J]. Geomorphology, 2012, 151/152: 139-155. doi: 10.1016/j.geomorph.2012.01.024
    [63] LIU Z Q, NADIM F, GARCIA-ARISTIZABAL A, et al. A three-level framework for multi-risk assessment[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2015, 9(2): 59-74. doi: 10.1080/17499518.2015.1041989
    [64] MARZOCCHI W, GARCIA-ARISTIZABAL A, GASPARINI P, et al. Basic principles of multi-risk assessment: a case study in Italy[J]. Natural Hazards, 2012, 62(2): 551-573. doi: 10.1007/s11069-012-0092-x
    [65] VLACHOGIANNIS D, SFETSOS A, MARKANTONIS I, et al. Quantifying the occurrence of multi-hazards due to climate change[J]. Applied Sciences, 2022, 12(3): 1218.1-1218.17.
    [66] MING X D, LIANG Q H, DAWSON R, et al. A quantitative multi-hazard risk assessment framework for compound flooding considering hazard inter-dependencies and interactions[J]. Journal of Hydrology, 2022, 607: 127477.1-127477.16.
    [67] 李钢,张倪飞,董志骞,等. 多灾害作用下工程结构分析与设计方法研究进展[J]. 土木工程学报,2023,56(8): 9-26.

    LI Gang, ZHANG Nifei, DONG Zhiqian, et al. Research progress of engineering structure analysis and design methods under muiple harzards[J]. China Civil Engineering Journal, 2023, 56(8): 9-26.
    [68] 黄朝迎,孙冷. 试论气候异常对重大工程建设的影响[J]. 地理学报,2000,55(增): 5-10.

    HUANG Chaoying, SUN Leng. Impacts of unusual climate on key project construction[J]. Acta Geographica Sinica, 2000, 55(S): 5-10.
    [69] 梅恒. 全寿命周期桥梁多灾害概率风险研究[D]. 哈尔滨:哈尔滨工业大学,2019.
    [70] DENG L, CAI C S. Applications of fiber optic sensors in civil engineering[J]. Structural Engineering and Mechanics, 2007, 25(5): 577-596. doi: 10.12989/sem.2007.25.5.577
    [71] XIONG W, CAI C S, KONG X. Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors[J]. Applied Optics, 2012, 51(5): 547-557. doi: 10.1364/AO.51.000547
    [72] CHIEW Y M. Scour protection at bridge piers[J]. Journal of Hydraulic Engineering, 1992, 118(9): 1260-1269. doi: 10.1061/(ASCE)0733-9429(1992)118:9(1260)
    [73] LAUCHLAN C S, MELVILLE B W. Riprap protection at bridge piers[J]. Journal of Hydraulic Engineering, 2001, 127(5): 412-418. doi: 10.1061/(ASCE)0733-9429(2001)127:5(412)
    [74] ZARRATI A R, GHOLAMI H, MASHAHIR M B. Application of collar to control scouring around rectangular bridge piers[J]. Journal of Hydraulic Research, 2004, 42(1): 97-103. doi: 10.1080/00221686.2004.9641188
    [75] WANG K, LIN C P, CHUNG C C. A bundled time domain reflectometry-based sensing cable for monitoring of bridge scour[J]. Structural Control and Health Monitoring, 2019, 26(5): e2345.1-e2345.14.
    [76] YU J D, LEE J S, YOON H K. Circular time-domain reflectometry system for monitoring bridge scour depth[J]. Marine Georesources & Geotechnology, 2020, 38(1): 312-321.
    [77] FUNDERBURK M L, TRAN J, TODD M D, et al. Active scour monitoring using ultrasonic time domain reflectometry of buried slender sensors[J]. Smart Material Structures, 2022, 31(1): 015045.1-015045.14.
    [78] KONG X, CAI C S, HU J X, et al. Field application of an innovative bridge scour monitoring system with fiber Bragg grating sensors[J]. Journal of Aerospace Engineering, 2017, 30(2): B4016008.1-B4016008.14.
    [79] 向琪芪,李亚东,魏凯,等. 桥梁基础冲刷研究综述[J]. 西南交通大学学报,2019,54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373

    XIANG Qiqi, LI Yadong, WEI Kai, et al. Review of bridge foundation scour[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373
    [80] JONGMAN B, WARD P J, AERTS J C J H. Global exposure to river and coastal flooding: long term trends and changes[J]. Global Environmental Change, 2012, 22(4): 823-835. doi: 10.1016/j.gloenvcha.2012.07.004
    [81] ALFIERI L, BISSELINK B, DOTTORI F, et al. Global projections of river flood risk in a warmer world[J]. Earth’s Future, 2017, 5(2): 171-182. doi: 10.1002/2016EF000485
    [82] WILLNER S N, LEVERMANN A, ZHAO F, et al. Adaptation required to preserve future high-end river flood risk at present levels[J]. Science Advances, 2018, 4(1): eaao1914.1-eaao1914.8.
    [83] 王唐修,姜鑫民. 谈气候变化影响及对策[J]. 中国能源,2002,156(12): 38-40.

    WANG Tangxiu, JIANG Xinmin. Influence and strategy of climate change[J]. Energy of China, 2002, 156(12): 38-40.
    [84] ALIPOUR A, SHAFEI B, SHINOZUKA M. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake[J]. Journal of Bridge Engineering, 2013, 18(5): 362-371. doi: 10.1061/(ASCE)BE.1943-5592.0000369
    [85] 孙得璋,陈斌,孙柏涛,等. 桥梁多灾害研究综述[J]. 自然灾害学报,2014,23(6): 32-37.

    SUN Dezhang, CHEN Bin, SUN Baitao, et al. A summary review of multiple hazards study on bridges[J]. Journal of Natural Disasters, 2014, 23(6): 32-37.
    [86] 陈梦成,温清清,罗睿,等. 地铁工程钢筋混凝土梁疲劳损伤演化和寿命预测模型研究[J]. 铁道学报,2021,43(1): 160-168.

    CHEN Mengcheng, WEN Qingqing, LUO Ru, et al. Investigation on prediction models of damage evolution and fatigue lifetime for reinforced concrete beams of metros[J]. Journal of the China Railway Society, 2021, 43(1): 160-168.
    [87] SPENCER P C, HENDY C R, PETTY R. Quantification of sustainability principles in bridge projects[J]. Proceedings of the Institution of Civil Engineers—Bridge Engineering, 2012, 165(2): 81-89. doi: 10.1680/bren.10.00037
    [88] YANG S C, LIU T J, HONG H P. Reliability of tower and tower-line systems under spatiotemporally varying wind or earthquake loads[J]. Journal of Structural Engineering, 2017, 143(10): 04017137.1-04017137.13.
    [89] DONG Y, FRANGOPOL D M, SAYDAM D. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10): 1451-1467.
    [90] VAN DE LINDT J W, DAO T N. Performance-based wind engineering for wood-frame buildings[J]. Journal of Structural Engineering, 2009, 135(2): 169-177. doi: 10.1061/(ASCE)0733-9445(2009)135:2(169)
    [91] CIAMPOLI M, PETRINI F, AUGUSTI G. Performance-based wind engineering: towards a general procedure[J]. Structural Safety, 2011, 33(6): 367-378. doi: 10.1016/j.strusafe.2011.07.001
    [92] DAO T N, VAN DE LINDT J W. Loss analysis for wood frame buildings during hurricanes. I: structure and hazard modeling[J]. Journal of Performance of Constructed Facilities, 2012, 26(6): 729-738. doi: 10.1061/(ASCE)CF.1943-5509.0000269
    [93] BANERJEE S, GANESH PRASAD G. Seismic risk assessment of reinforced concrete bridges in flood-prone regions[J]. Structure and Infrastructure Engineering, 2013, 9(9): 952-968. doi: 10.1080/15732479.2011.649292
    [94] 顾祥林,余倩倩,姜超,等. 城市土木工程基础设施韧性提升理论与方法[J]. 工程力学,2023,40(3): 1-13.

    GU Xianglin, YU Qianqian, JIANG Chao, et al. Theory and method of resilience enhancement of urban civil engineering infrastructures[J]. Engineering Mechanics, 2023, 40(3): 1-13.
    [95] KUMAR R, GARDONI P. Effect of seismic degradation on the fragility of reinforced concrete bridges[J]. Engineering Structures, 2014, 79: 267-275. doi: 10.1016/j.engstruct.2014.08.019
    [96] KABIR S, PATIDAR S, XIA X L, et al. A deep convolutional neural network model for rapid prediction of fluvial flood inundation[J]. Journal of Hydrology, 2020, 590: 125481.1-125481.45.
    [97] 董胜,周冲,陶山山,等. 基于ClaytonCopula函数的二维Gumbel模型及其在海洋平台设计中的应用[J]. 中国海洋大学学报(自然科学版),2011,41(10): 117-120.

    DONG Sheng, ZHOU Chong, TAO Shanshan, et al. Bivariate gumbel distribution based on clayton copula and its application in offshore platform design[J]. Periodical of Ocean University of China, 2011, 41(10): 117-120.
    [98] LI H N, ZHENG X W, LI C. Copula-based approach to construct a joint probabilistic model of earthquakes and strong winds[J]. International Journal of Structural Stability and Dynamics, 2019, 19(4): 1950046.1-1950046.21.
    [99] ZHENG X W, LI H N, YANG Y B, et al. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data[J]. Engineering Structures, 2019, 200: 109697.1-109697.14.
    [100] 陈子燊. 波高与风速联合概率分布研究[J]. 海洋通报,2011,30(2): 159-164.

    CHEN Zishen. Study on joint probability distribution of wave height and wind velocity[J]. Marine Science Bulletin, 2011, 30(2): 159-164.
    [101] LI H N, ZHENG X W, LI C. Copula-based joint distribution analysis of wind speed and direction[J]. Journal of Engineering Mechanics, 2019, 145(5): 04019024.1-04019024.12.
    [102] 杨延凯,马如进,陈艾荣. 基于风险的桥梁多灾害下合理冲刷深度研究[J]. 华南理工大学学报(自然科学版),2016,44(3): 103-109,127.

    YANG Yankai, MA Rujin, CHEN Airong. Risk-based probe into appropriate scour depth of bridge under multiple hazards[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(3): 103-109,127.
    [103] 谷音,范立础,叶建仁. 基于结构易损性的斜拉桥多灾害安全性能研究[J]. 福州大学学报(自然科学版),2010,38(3): 401-407.

    GU Yin, FAN Lichu, YE Jianren. The assessment method of safety performance of cable-stayed bridge under multi-hazard based on structure vulnerability[J]. Journal of Fuzhou University (Natural Science Edition), 2010, 38(3): 401-407.
    [104] 陈力波,王嘉嘉,上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学,2018,35(1): 160-171,181.

    CHEN Libo, WANG Jiajia, SHANGGUAN Ping. Research of seismic vulnerability model for skew highway girder bridge[J]. Engineering Mechanics, 2018, 35(1): 160-171,181.
    [105] 郭悬,张琛,王云磊. 浅基础桥梁在锈蚀和主震-余震序列作用下的易损性[J]. 扬州大学学报(自然科学版),2018,21(4): 79-82.

    GUO Xuan, ZHANG Chen, WANG Yunlei. Seismic fragility analysis of shallow foundation supported bridge under corrosion and mainshock-aftershock sequences[J]. Journal of Yangzhou University (Natural Science Edition), 2018, 21(4): 79-82.
    [106] 贾布裕,余晓琳,颜全胜. 基于离散动态贝叶斯网络的桥梁状态评估方法[J]. 桥梁建设,2016,46(3): 74-79.

    JIA Buyu, YU Xiaolin, YAN Quansheng. Method of bridge condition assessment based on discrete dynamic Bayesian networks[J]. Bridge Construction, 2016, 46(3): 74-79.
    [107] 卢鑫月,许成顺,侯本伟,等. 基于动态贝叶斯网络的地铁隧道施工风险评估[J]. 岩土工程学报,2022,44(3): 492-501.

    LU Xinyue, XU Chengshun, HOU Benwei, et al. Risk assessment of metro construction based on dynamic Bayesian network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 492-501.
    [108] SHAN J Z, ZHUANG C H, LOONG C N. Parametric identification of Timoshenko-beam model for shear-wall structures using monitoring data[J]. Mechanical Systems and Signal Processing, 2023, 189: 110100.1-110100.19.
    [109] 张望欣,韩强,温佳年,等. 基于地震灾害管理的桥梁网络韧性决策框架[J]. 土木工程学报,2023,56(4): 72-82.

    ZHANG Wangxin, HAN Qiang, WEN Jianian, et al. A decision framework for improving bridge network resilience based on earthquake disaster management[J]. China Civil Engineering Journal, 2023, 56(4): 72-82.
    [110] 毛新华,王建伟,袁长伟,等. 基于韧性最优的灾后公路网修复调度研究[J]. 中国公路学报,2022,35(6): 289-298.

    MAO Xinhua, WANG Jianwei, YUAN Changwei, et al. Restoration scheduling for post-disaster road networks based on resilience optimization[J]. China Journal of Highway and Transport, 2022, 35(6): 289-298.
    [111] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版),2023,53(6): 1529-1549.

    HUANG Xiaoming, ZHAO Runming. Status and prospects of highway transportation infrastructure resilience research[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1529-1549.
    [112] SHAN J Z, WANG L J, LOONG C N, et al. Rapid seismic performance evaluation of existing frame structures using equivalent SDOF modeling and prior dynamic testing[J]. Journal of Civil Structural Health Monitoring, 2023, 13(2): 749-766.
    [113] 梁逸文,陈清军. 不同场地条件下远场地震动强度指标与结构最大响应的相关性分析[J]. 力学季刊,2022,43(3): 592-602.

    LIANG Yiwen, CHEN Qingjun. Correlation analysis between intensity measures of far-field ground motion and maximum structural seismic responses under different site conditions[J]. Chinese Quarterly of Mechanics, 2022, 43(3): 592-602.
    [114] 宫凤强,李嘉维. 基于PCA-DDA原理的砂土液化预测模型及应用[J]. 岩土力学,2016,37(增1): 448-454.

    GONG Fengqiang, LI Jiawei. Discrimination model of sandy soil liquefaction based on PCA-DDA principle and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 448-454.
    [115] 季家威. PCA在环境影响下结构损伤识别中的应用[D]. 苏州:苏州科技大学,2019.
    [116] 李岩,张久鹏,陈子璇,等. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版),2023,53(6): 1729-1735.

    LI Yan, ZHANG Jiupeng, CHEN Zixuan, et al. Evaluation of asphalt pavement performance based on PCA-PSO-SVM[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1729-1735.
    [117] 李宏男,张文圣,付兴. 基于大数据深度学习的输电塔结构抗风易损性评估[J]. 土木工程学报,2022,55(9): 54-64.

    LI Hongnan, ZHANG Wensheng, FU Xing. Fragility assessment of a transmission tower subjected to wind load based on big data and deep learning[J]. China Civil Engineering Journal, 2022, 55(9): 54-64.
    [118] 马世龙,乌尼日其其格,李小平. 大数据与深度学习综述[J]. 智能系统学报,2016,11(6): 728-742.

    MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data: state of the art and development[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 728-742.
    [119] 吕五一,刘仍奎,张秋艳,等. 基于集成学习算法的轨道几何状态短期预测模型[J]. 铁道建筑,2021,61(4): 107-110,115.

    LYU Wuyi,LIU Rengkui,ZHANG Qiuyan, et al. Short-term prediction model of track geometry state based on ensemble learning algorithm[J]. Railway Engineering, 2021, 61(4): 107-110,115.
    [120] 杜宪亭,夏禾,李慧乐,等. 基于改进高斯精细积分法的车桥耦合振动分析框架[J]. 工程力学,2013,30(9): 171-176.

    DU Xianting, XIA He, LI Huile, et al. Dynamic analysis framework of train-bridge system based on improved gauss precise integration method[J]. Engineering Mechanics, 2013, 30(9): 171-176.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  105
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-15
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-02-08

目录

/

返回文章
返回