Particle Crushing Behavior and Strength Generation Mechanism of Red-Bed Soil-Rock Mixture
-
摘要:
揭示红层土石混合体颗粒破碎行为及强度产生机制对四川盆地红层土石混合体路用性能具有重要意义. 引入相对粗砾比概念,通过15组大型三轴试验,利用数字图像处理技术统计红层土石混合体的分维数,定义描述其颗粒破碎行为的相对分维比,探究含石量和相对粗砾比对红层土石混合体强度和颗粒破碎行为的影响. 结果表明:黏聚力关于含石量和相对粗砾比呈指数型增长,黏聚力随含石量和相对粗砾比的增大而增大;内摩擦角正切值关于含石量和相对粗砾比分别呈现正弦型增长和负指数型增长,内摩擦角正切值趋平于下界tan 31.69°;红层土石混合体的相对分维比关于含石量和相对粗砾比分别呈正切型增长和负指数型增长;含石量的提高使红层土石混合体更为密实,同时也会维持内摩擦角基本不变,而相对粗砾比的提高可以减缓块石颗粒破碎,降低红层土石混合体的内摩擦角,提高其黏聚力.
Abstract:Revealing the particle crushing behavior and strength generation mechanism of the red-bed soil-rock mixture (R-B S-RM) has significance for the road performance of the R-B S-RM in the Sichuan Basin. In this study, the concept of relative coarse particle ratio was introduced, and 15 sets of large-scale triaxial tests were conducted. The fractal dimension of the R-B S-RMs was statistically analyzed using digital image processing technology. The relative fractal ratio, which described the particle crushing behavior, was defined. The effects of the stone content and relative fractal ratio on the strength and particle crushing behavior of the R-B S-RMs were investigated. The results indicate that the cohesion exhibits exponential growth with stone content and relative fractal ratio, and the cohesion increases with stone content and relative fractal ratio. The tangent of the internal friction angle exhibits sinusoidal growth and negative exponential growth with stone content and relative fractal ratio, respectively. The tangent of the internal friction angle tends to stabilize at a lower bound of tan 31.69°. The relative fractal ratio exhibits tangential growth and negative exponential growth with stone content and relative fractal ratio, respectively. Increasing stone content results in a denser R-B S-RM with little change in the internal friction angle. Moreover, increasing the relative fractal ratio can slow down the crushing behavior of blocks, reduce the internal friction angle of the R-B S-RMs, and enhance their cohesion.
-
表 1 红层土石混合体组分物性指标
Table 1. Physical properties of compositions of R-B S-RM
指标 粉质黏土 中风化粉砂质泥岩 天然密度 ρ/(g•cm−3) 1.78 2.56 天然含水量 w/% 16.67 1.92 土粒相对密度 Gs 2.72 内摩擦角 $\varphi $/(°) 27.07 38.40 黏聚力 c/kPa 25.32 560.00 天然单轴抗压强度 σc/MPa 6.83 表 2 粒度分布选取
Table 2. Selection of particle size distributions
P5 编号 P20/P5 0.5 50-Ⅰ 0 50-Ⅱ 0.140 50-Ⅲ 0.280 50-Ⅳ 0.420 50-Ⅴ 0.560 0.6 60-Ⅰ 0 60-Ⅱ 0.140 60-Ⅲ 0.280 60-Ⅳ 0.420 60-Ⅴ 0.560 0.7 70-Ⅰ 0.300 70-Ⅱ 0.475 70-Ⅲ 0.650 70-Ⅳ 0.825 70-Ⅴ 1.000 表 3 不同粒度分布下红层土石混合体的Dr值
Table 3. Values of Dr of R-B S-RMs under different particle size distributions
${P_5}$ ${P_{20}}{\text{/}}{P_5}$ Dr $\sigma _1 $=100 kPa $\sigma _2 $=200 kPa $\sigma _3 $=300 kPa $\sigma _4 $=400 kPa 0.5 0 1.005 1.005 1.005 1.006 0.140 1.004 1.004 1.004 1.008 0.280 1.001 1.002 1.003 1.006 0.420 1.003 1.006 1.005 1.007 0.560 1.003 1.004 1.005 1.006 0.6 0 1.014 1.016 1.018 1.021 0.140 1.009 1.010 1.015 1.018 0.280 1.008 1.010 1.014 1.015 0.420 1.003 1.006 1.007 1.010 0.560 1.004 1.007 1.008 1.009 0.7 0.300 1.029 1.037 1.039 1.043 0.475 1.023 1.024 1.032 1.041 0.650 1.011 1.017 1.019 1.025 0.825 1.008 1.008 1.011 1.025 1.000 1.011 1.018 1.018 1.019 表 4 拟合公式相关参数取值
Table 4. Values of relevant parameters for fitting formula
围压/kPa a3 b3 c3 m3 w3 R 100 0.97 0.004 0.026 2.03 1.13 0.84 200 0.98 0.005 0.025 2.02 1.18 0.79 300 0.96 0.009 0.034 1.94 1.04 0.85 400 0.92 0.008 0.082 2.00 0.61 0.93 -
[1] WEN B P, HE L. Influence of lixiviation by irrigation water on residual shear strength of weathered red mudstone in Northwest China: Implication for its role in landslides' reactivation[J]. Engineering Geology, 2012, 151: 56-63. doi: 10.1016/j.enggeo.2012.08.005 [2] ZHANG S, XU Q, HU Z M. Effects of rainwater softening on red mudstone of deep-seated landslide, Southwest China[J]. Engineering Geology, 2016, 204: 1-13. doi: 10.1016/j.enggeo.2016.01.013 [3] QI J F, SUI W H, LIU Y, et al. Slaking process and mechanisms under static wetting and drying cycles slaking tests in a red strata mudstone[J]. Geotechnical and Geological Engineering, 2015, 33(4): 959-972. doi: 10.1007/s10706-015-9878-4 [4] 纪宇, 梁庆国, 郭俊彦, 等. 红层软岩地区高速铁路深路堑基底变形规律研究[J]. 铁道科学与工程学报, 2021, 18(3): 572-580.JI Yu, LIANG Qingguo, GUO Junyan, et al. Study on deformation law of deep foundation of high speed railway in red layer soft rock area[J]. Journal of Railway Science and Engineering, 2021, 18(3): 572-580. [5] 中国交通运输协会. 交通运输科学技术新成果推广目录(2021)[M]. 北京: 中国市场出版社, 2022. [6] HE Z, ZHANG J, ZHANG Y, et al. Compaction quality control of soil-rock filled subgrades in mountainous areas[J]. Bulletin of Engineering Geology and the Environment, 2025, 84: 326. doi: 10.1007/s10064-025-04331-x [7] CAVARRETTA I, COOP M, O’SULLIVAN C. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 2010, 60(6): 413-423. [8] SUKKARAK R P, TJAWEE P, JONGPRADIST P, et al. Deformation analysis of high CFRD considering the scaling effects[J]. Geomechanics and Engineering, 2018, 14(3): 211-224. [9] 吴二鲁, 朱俊高, 王龙, 等. 粗粒料的单参数级配方程及其适用性研究[J]. 岩土力学, 2020, 41(3): 831-836.WU Erlu, ZHU Jungao, WANG Long, et al. Single-parameter gradation equation for coarse-grained soil and its applicability[J]. Rock and Soil Mechanics, 2020, 41(3): 831-836. [10] BAYAT E, BAYAT M. Effect of grading characteristics on the undrained shear strength of sand: review with new evidences[J]. Arabian Journal of Geosciences, 2013, 6(11): 4409-4418. doi: 10.1007/s12517-012-0670-y [11] 刘映晶, 王建华, 尹振宇, 等. 考虑级配效应的粒状材料本构模拟[J]. 岩土工程学报, 2015, 37(2): 299-305. doi: 10.11779/CJGE201502013LIU Yingjing, WANG Jianhua, YIN Zhenyu, et al. Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. doi: 10.11779/CJGE201502013 [12] 贾学明, 柴贺军, 郑颖人. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. 岩土力学, 2010, 31(9): 2695-2703.JIA Xueming, CHAI Hejun, ZHENG Yingren. Mesomechanics research of large direct shear test on soil and rock aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 2010, 31(9): 2695-2703. [13] 唐建一, 徐东升, 刘华北. 含石量对土石混合体剪切特性的影响[J]. 岩土力学, 2018, 39(1): 93-102.TANG Jianyi, XU Dongsheng, LIU Huabei. Effect of gravel content on shear behavior of sand-gravel mixture[J]. Rock and Soil Mechanics, 2018, 39(1): 93-102. [14] 涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928.TU Yiliang, LIU Xinrong, REN Qingyang, et al. Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928. [15] 王光进, 杨春和, 张超, 等. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30(12): 3649-3654.WANG Guangjin, YANG Chunhe, ZHANG Chao, et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30(12): 3649-3654. [16] HAMIDI A, AZINI E, MASOUDI B. Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures[J]. Scientia Iranica, 2012, 19(3): 393-402. doi: 10.1016/j.scient.2012.04.002 [17] 李维树, 丁秀丽, 邬爱清, 等. 蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J]. 岩土力学, 2007, 28(7): 1338-1342.LI Weishu, DING Xiuli, WU Aiqing, et al. Shear strength degeneration of soil and rock mixture in Three Gorges Reservoir bank slopes under influence of impounding[J]. Rock and Soil Mechanics, 2007, 28(7): 1338-1342. [18] 邓华锋, 原先凡, 李建林, 等. 土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32(增2): 4065-4072.DENG Huafeng, YUAN Xianfan, LI Jianlin, et al. Research on failure characteristics and determination method for shear strength of earth-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4065-4072. [19] 刘忠强, 薛亚东, 黄宏伟, 等. 崩积体剪切性能试验研究[J]. 岩土力学, 2012, 33(8): 2349-2358.LIU Zhongqiang, XUE Yadong, HUANG Hongwei, et al. Experimental research on shear behavior of colluvium[J]. Rock and Soil Mechanics, 2012, 33(8): 2349-2358. [20] 舒志乐, 刘新荣, 刘保县, 等. 基于分形理论的土石混合体强度特征研究[J]. 岩石力学与工程学报, 2009, 28(增1): 2651-2656.SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Study of strength properties of earth-rock aggregate based on fractals[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2651-2656. [21] 刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(9): 2260-2274.LIU Xinrong, TU Yiliang, WANG Linfeng, et al. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2260-2274. [22] 张俊云, 张乐, 高福洲, 等. 粒度分布对红层土石混合体强度及颗粒破碎的影响[J]. 工程地质学报, 2024, 32(5): 1499-1508.ZHANG Junyun, ZHANG Le, GAO Fuzhou, et al. Effect of particle size distribution on strength and particle breakage of red-bed soil-rock mixture[J]. Journal of Engineering Geology, 2024, 32(5): 1499-1508. [23] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. [24] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369. doi: 10.2136/sssaj1992.03615995005600020005x [25] 舒志乐, 刘新荣, 刘保县, 等. 土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报(自然科学版), 2010, 41(3): 1096-1101.SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1096-1101. [26] LIU L Q, YANG Y S, MAO X S, et al. Macro-meso shear properties of alluvial-diluvial soil-rock mixture (ADSRM) subgrade fillers based on field investigation and N-method[J]. Case Studies in Construction Materials, 2022, 17: e01694. doi: 10.1016/j.cscm.2022.e01694 [27] 刘新荣, 涂义亮, 王鹏, 等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434.LIU Xinrong, TU Yiliang, WANG Peng, et al. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. [28] CHEN W B, FENG W Q, YIN J H. Effects of water content on resilient modulus of a granular material with high fines content[J]. Construction and Building Materials, 2020, 236: 117542. doi: 10.1016/j.conbuildmat.2019.117542 [29] LI S Q, YANG Z P, TIAN X, et al. Influencing factors of scale effects in large-scale direct shear tests of soil-rock mixtures based on particle breakage[J]. Transportation Geotechnics, 2021, 31: 100677. doi: 10.1016/j.trgeo.2021.100677 [30] TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1/2/3): 190-198. [31] XU W J, ZHANG H Y, JIE Y X, et al. Generation of 3D random meso-structure of soil-rock mixture and its meso-structural mechanics based on numerical tests[J]. Journal of Central South University, 2015, 22(2): 619-630. doi: 10.1007/s11771-015-2563-1 [32] HE Z, ZHANG J, LUO X, et al. A 3D DEM modeling of soil-rock mixture considering spatial distribution orientation of blocks[J]. Scientific Reports, 2024, 14: 25647. doi: 10.1038/s41598-024-77366-x [33] 张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791.ZHANG Jiru, HU Yong, ZHANG Biwen, et al. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. -
下载: