• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

面向无人机的通信感知一体化系统自干扰消除技术

叶启彬 肖泓宇 田晨 刘名 付沄琳 胡苏

叶启彬, 肖泓宇, 田晨, 刘名, 付沄琳, 胡苏. 面向无人机的通信感知一体化系统自干扰消除技术[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230599
引用本文: 叶启彬, 肖泓宇, 田晨, 刘名, 付沄琳, 胡苏. 面向无人机的通信感知一体化系统自干扰消除技术[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230599
YE Qibin, XIAO Hongyu, TIAN Chen, LIU Ming, FU Yunlin, HU Su. Self-Interference Cancellation Technology of Integrated Sensing and Communications System for Unmanned Aerial Vehicles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230599
Citation: YE Qibin, XIAO Hongyu, TIAN Chen, LIU Ming, FU Yunlin, HU Su. Self-Interference Cancellation Technology of Integrated Sensing and Communications System for Unmanned Aerial Vehicles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230599

面向无人机的通信感知一体化系统自干扰消除技术

doi: 10.3969/j.issn.0258-2724.20230599
基金项目: 国家自然科学基金(61971092,62301113);中国博士后科学基金(2023M730508);中央高校基本科研业务费项目(ZYGX2020ZB045,ZYGX2019J123,ZYGX2022J033,2242022k60006)
详细信息
    作者简介:

    叶启彬(1996—),男,博士研究生,研究方向为通信感知一体化,E-mail:202111220623@std.uestc.edu.cn

    通讯作者:

    胡苏(1983—),男,教授,博士,研究方向为5G/6G移动通信技术与系统,E-mail:husu@uestc.edu.cn

  • 中图分类号: TN975;V279

Self-Interference Cancellation Technology of Integrated Sensing and Communications System for Unmanned Aerial Vehicles

  • 摘要:

    在无人机通信场景中,机载通信感知一体化系统受到本地信号发射带来的强烈自干扰影响,导致系统对目标的感知性能降低. 针对这一挑战,提出基于正交频分复用(OFDM)的通信感知一体化自干扰消除方法. 首先,建立基于OFDM的通信感知一体化系统回波模型,并引入自干扰信号;然后,利用最小二乘算法估计自干扰信号的信道增益,并利用该增益对自干扰信号进行重建和抑制;最后,通过无人机通信场景下的仿真实验验证所提方法的有效性. 结果表明,该方法能够将自干扰信号抑制到噪声功率水平,将目标回波信号的信干噪比提升近10.00 dB,从而有效提高系统的感知性能.

     

  • 图 1  OFDM-based ISAC系统架构

    Figure 1.  OFDM-based ISAC system architecture

    图 2  $ {R_{\text{T}}}{\text{ = 13}}{\text{.38 m,}} $SIC处理前、后的雷达图像

    Figure 2.  Radar images before and after SIC processing when RT = 13.38 m

    图 3  $ {R_{\text{T}}}{\text{ = 3}}{\text{.72 m,}} $SIC处理前、后的雷达图像

    Figure 3.  Radar images before and after SIC processing when RT = 3.72 m

    图 4  $ {R_{\text{T}}}{\text{ = 1}}{\text{.63 m,}} $SIC处理前、后的雷达图像

    Figure 4.  Radar images before and after SIC processing when RT = 1.63 m

    表  1  OFDM-based ISAC系统参数

    Table  1.   Parameters of OFDM-based ISAC system

    符号 数值
    ${f_{\text{c}}}$/GHz 24
    M/个 256
    N/个 1024
    $\Delta f$/kHz 90.909
    $T$/μs $11$
    ${T_{{\text{CP}}}}$/μs $1.375$
    $ T_{\mathrm{o}}$/μs $12.375$
    $B$/MHz 93.1
    ${R_{\max }}$/m 206
    $\Delta R$/m 1.61
    ${v_{\max }}$/(m·s−1) ±252.3
    $\Delta v$/(m·s−1) 1.97
    下载: 导出CSV

    表  2  SIC处理前后SINR

    Table  2.   SINRs before and after SIC processing dB

    RT/m 目标 1 目标 2
    SIC 前 SIC 后 SIC 前 SIC 后
    13.38 −32.93 −23.73 −32.93 −23.73
    3.72 −7.03 2.18 −7.03 2.18
    1.63 2.51 6.84 2.51 6.84
    下载: 导出CSV
  • [1] HUANG Y X, HU S, MA S Y, et al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6979-6993. doi: 10.1109/TWC.2022.3153606
    [2] 叶启彬,胡泽林,黄驿轩,等. 5G NR通信雷达一体化系统雷达性能分析[J]. 电子科技大学学报,2022,51(6): 847-855. doi: 10.12178/1001-0548.2022299

    YE Qibin, HU Zelin, HUANG Yixuan, et al. Radar performance analysis of 5G NR RadCom system[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(6): 847-855. doi: 10.12178/1001-0548.2022299
    [3] 胡泽林,叶启彬,黄驿轩,等. 基于频分多址的多用户OFDM通信雷达一体化方案[J]. 电子科技大学学报,2023,52(2): 196-202. doi: 10.12178/1001-0548.2022359

    HU Zelin, YE Qibin, HUANG Yixuan, et al. Multiuser OFDM RadCom scheme based on FDMA[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(2): 196-202. doi: 10.12178/1001-0548.2022359
    [4] LIU F, CUI Y H, MASOUROS C, et al. Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728-1767. doi: 10.1109/JSAC.2022.3156632
    [5] BEKKERMAN I, TABRIKIAN J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3883. doi: 10.1109/TSP.2006.879267
    [6] WANG X L, SONG T H, WU Y X. Covering a mobile target using mobile sensor networks[C]//2016 Chinese Control and Decision Conference (CCDC). Yinchuan: IEEE, 2016: 1433-1437.
    [7] HU S Y, YUAN X, NI W, et al. Trajectory planning of cellular-connected UAV for communication-assisted radar sensing[J]. IEEE Transactions on Communications, 2022, 70(9): 6385-6396. doi: 10.1109/TCOMM.2022.3195868
    [8] MENG K T, WU Q Q, MA S D, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211-1215. doi: 10.1109/LWC.2022.3161338
    [9] JIANG W W, SHEN C, AI B. UAV-assisted sensing and communication design for average peak age-of-information minimization[C]//2022 IEEE International Conference on Communications Workshops (ICC Workshops). Seoul: IEEE, 2022: 1005-1010.
    [10] LYU Z H, ZHU G X, XU J. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2022, 22(4): 2424-2440.
    [11] 张燕霞,刘向南,孙春蕾,等. 基于通感一体化的6G无人机网络[J]. 移动通信,2023,47(9): 71-76.

    ZHANG Yanxia, LIU Xiangnan, SUN Chunlei, et al. Integrated sensing and communication-based 6G UAV networks[J]. Mobile Communications, 2023, 47(9): 71-76.
    [12] 周杲,范平志,郝莉. 基于OFDM的DFT加扰矢量码分多址接入技术[J]. 西南交通大学学报,2017,52(1): 148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021

    ZHOU Gao, FAN Pingzhi, HAO Li. OFDM based DFT scrambling vector code division multiple access[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021
    [13] HWANG T, YANG C Y, WU G, et al. OFDM and its wireless applications: a survey[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673-1694. doi: 10.1109/TVT.2008.2004555
    [14] LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings–Radar, Sonar and Navigation, 2000, 147(6): 276-284. doi: 10.1049/ip-rsn:20000734
    [15] STURM C, WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236-1259. doi: 10.1109/JPROC.2011.2131110
    [16] STURM C, ZWICK T, WIESBECK W. An OFDM system concept for joint radar and communications operations[C]//VTC Spring 2009—IEEE 69th Vehicular Technology Conference. Barcelona: IEEE, 2009: 1-5.
    [17] LIU Y J, LIAO G S, YANG Z W, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669-680. doi: 10.21629/JSEE.2017.04.06
    [18] 仲福建,赵永驰. 全双工中继选择策略的性能研究[J]. 西南交通大学学报,2015,50(5): 912-916. doi: 10.3969/j.issn.0258-2724.2015.05.022

    ZHONG Fujian, ZHAO Yongchi. Performance research on full-duplex relay selection scheme[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 912-916. doi: 10.3969/j.issn.0258-2724.2015.05.022
    [19] KORPI D, RIIHONEN T, SYRJÄLÄ V, et al. Full-duplex transceiver system calculations: analysis of ADC and linearity challenges[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3821-3836. doi: 10.1109/TWC.2014.2315213
    [20] NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair full-duplex relaying with massive arrays and linear processing[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721-1737. doi: 10.1109/JSAC.2014.2330091
    [21] KIM D, JU H, PARK S, et al. Effects of channel estimation error on full-duplex two-way networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4666-4672. doi: 10.1109/TVT.2013.2265407
    [22] AHMED E, ELTAWIL A M, SABHARWAL A. Rate gain region and design tradeoffs for full-duplex wireless communications[J]. IEEE Transactions on Wireless Communications, 2013, 12(7): 3556-3565. doi: 10.1109/TWC.2013.060413.121871
    [23] KOLODZIEJ K E, PERRY B T, HERD J S. In-band full-duplex technology: techniques and systems survey[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 3025-3041. doi: 10.1109/TMTT.2019.2896561
    [24] ZHANG Z S, LONG K P, VASILAKOS A V, et al. Full-duplex wireless communications: challenges, Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication solutions, and future research directions[J]. Proceedings of the IEEE, 2016, 104(7): 1369-1409. doi: 10.1109/JPROC.2015.2497203
    [25] 管鹏鑫,汪奕汝,赵玉萍. 基于正则化的全双工通信系统非线性自干扰消除方法[J]. 北京大学学报(自然科学版),2021,57(6): 991-996.

    GUAN Pengxin, WANG Yiru, ZHAO Yuping. A regularization based nonlinear self-interference suppression method for full duplex communication systems[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 991-996.
    [26] BERGER C R, DEMISSIE B, HECKENBACH J, et al. Signal processing for passive radar using OFDM waveforms[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 226-238. doi: 10.1109/JSTSP.2009.2038977
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2024-01-11
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回