• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速磁浮车-桥耦合振动控制参数影响分析

卜秀孟 王力东 黎清蓉 胡朋 韩艳

卜秀孟, 王力东, 黎清蓉, 胡朋, 韩艳. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报, 2024, 59(4): 848-857, 866. doi: 10.3969/j.issn.0258-2724.20230534
引用本文: 卜秀孟, 王力东, 黎清蓉, 胡朋, 韩艳. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报, 2024, 59(4): 848-857, 866. doi: 10.3969/j.issn.0258-2724.20230534
BU Xiumeng, WANG Lidong, LI Qingrong, HU Peng, HAN Yan. Influence Analysis of Vibration Control Parameters for High-Speed Maglev Train-Bridge Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857, 866. doi: 10.3969/j.issn.0258-2724.20230534
Citation: BU Xiumeng, WANG Lidong, LI Qingrong, HU Peng, HAN Yan. Influence Analysis of Vibration Control Parameters for High-Speed Maglev Train-Bridge Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857, 866. doi: 10.3969/j.issn.0258-2724.20230534

高速磁浮车-桥耦合振动控制参数影响分析

doi: 10.3969/j.issn.0258-2724.20230534
基金项目: 国家自然科学基金(52208459, 52178452, 52178450);中国博士后科学基金(2022M723004);湖南省自然科学基金(2022JJ40496,2022JJ2002);湖南省教育厅优秀青年基金(23B0312);
详细信息
    作者简介:

    卜秀孟(1998—),男,博士研究生,研究方向为高速磁浮列车-轨道梁耦合振动,E-mail:buxiumeng1121@163.com

    通讯作者:

    王力东(1990—),男, 副教授,博士,研究方向为高铁/磁浮车-桥耦合振动,E-mail:wangld@csust.edu.cn

  • 中图分类号: U237

Influence Analysis of Vibration Control Parameters for High-Speed Maglev Train-Bridge Coupling

  • 摘要:

    磁浮列车悬浮系统控制参数取值不当可能导致车-桥系统异常振动. 因此,明确悬浮系统控制参数与磁浮车-桥系统动力响应之间的关系十分重要. 首先,建立包含比例-微分控制的5节编组磁浮列车动力学模型和20跨简支梁桥有限元模型;其次,与实测结果进行对比验证所建立模型的正确性;最后,计算车速430 km/h时不同控制参数下列车和桥梁的动力响应. 结果表明:增大比例系数会使悬浮和导向系统刚度增大,增大微分系数会使悬浮和导向系统阻尼增大;车体竖向加速度随比例和微分系数的增大而增大,车体横向加速度随比例系数的增大而增大;悬浮间隙和桥梁竖向加速度均随比例系数的增大而减小,随微分系数的增大而增大;导向间隙随微分系数的增大而减小,比例系数对导向间隙的影响较小;桥梁横向加速度随比例系数的增大而减小,随微分系数的增大而增大;桥梁竖向加速度主要受电磁力中悬浮电磁铁长度特征频率1倍~12倍频的影响,桥梁横向加速度主要受导向磁极长度特征频率及其2倍频和导向电磁铁长度特征频率2倍频及4倍频的影响;为减小车-桥系统动力响应,综合建议竖向比例和微分系数的取值范围分别为3000~4000和10~25,横向比例和微分系数的取值范围分别为4000~5000和10~25.

     

  • 图 1  车辆模型

    Figure 1.  Train model

    图 2  桥梁模型

    Figure 2.  Bridge model

    图 3  轨道不平顺样本

    Figure 3.  Sample of track irregularities

    图 4  数值模拟与实测结果对比

    Figure 4.  Comparison of numerical simulation and measured results

    图 5  不同控制参数下车体竖向加速度最大值

    Figure 5.  Maximum values of vertical acceleration of car body under different control parameters

    图 6  不同控制参数下悬浮电磁力最大值

    Figure 6.  Maximum values of suspended electromagnetic force under different control parameters

    图 7  不同控制参数下悬浮电磁力幅值谱

    Figure 7.  Amplitude spectrum of suspended electromagnetic force under different control parameters

    图 8  不同控制参数下中间悬浮磁极间隙变化量

    Figure 8.  Variation of intermediate suspended pole gap under different control parameters

    图 9  不同控制参数下悬浮间隙时程曲线及其幅值谱(KD1=25)

    Figure 9.  Suspension gap time history curve and amplitude spectrum under different control parameters (KD1 = 25)

    图 10  不同控制参数下主梁跨中竖向加速度最大值

    Figure 10.  Maximum values of vertical acceleration at midspan of girder under different control parameters

    图 11  不同KD1下主梁跨中竖向加速度幅值谱(KP1=6000)

    Figure 11.  Amplitude spectrum of vertical acceleration at midspan of girder under different KD1KP1 = 6 000)

    图 12  不同控制参数下车体横向加速度最大值

    Figure 12.  Maximum values of lateral acceleration of car body under different control parameters

    图 13  不同控制参数下导向电磁力最大值

    Figure 13.  Maximum values of guidance electromagnetic force under different control parameters

    图 14  不同控制参数下导向电磁力幅值谱

    Figure 14.  Amplitude spectrum of guidance electromagnetic force under control parameters

    图 15  不同控制参数下中间导向磁极间隙变化量

    Figure 15.  Variation of intermediate guidance pole gap under different control parameters

    图 16  不同控制参数下主梁跨中横向加速度最大值

    Figure 16.  Maximum values of lateral acceleration at midspan of girder under different control parameters

    图 17  不同KD2下主梁跨中横向加速度幅值谱(KP2=6000)

    Figure 17.  Amplitude spectrum of lateral acceleration at midspan of girder under different KD2KP2 = 6 000)

    表  1  车辆模型参数

    Table  1.   Parameters of train model

    参数 数值
    车体质量/(× 104 kg) 3.90
    车体侧滚质量惯性矩/(× 104 kg•m2 6.46
    车体摇头质量惯性矩/(× 104 kg•m2 1.75
    车体点头质量惯性矩/(× 104 kg•m2 1.76
    一系/二系弹簧竖向刚度/(×106 N•m−1 20/2
    一系/二系弹簧竖向阻尼/(×103 N•s•m−1 5/5
    一系/二系弹簧横向刚度/(×106 N•m−1 28/2
    一系/二系弹簧横向阻尼/(×102 N•s•m−1 5/20
    空气弹簧刚度竖向/(× 106 N•m−1 1.90
    下载: 导出CSV

    表  2  桥梁模型参数

    Table  2.   Parameters of bridge model

    参数 数值
    主梁/钢轨/桥墩密度/(kg•m−3 2551/7850/2500
    主梁/钢轨/桥墩弹性模量/GPa 44.5/206.0/30.0
    主梁/钢轨/桥墩泊松比 0.2/0.3/0.2
    下载: 导出CSV
  • [1] SU X Y, XU Y L, YANG X F. Neural network adaptive sliding mode control without overestimation for a maglev system[J]. Mechanical Systems and Signal Processing, 2022, 168: 108661.1-108661.12.
    [2] 马卫华,胡俊雄,李铁,等. EMS型中低速磁浮列车悬浮架技术研究综述[J]. 西南交通大学学报,2023,58(4): 720-733.

    MA Weihua, HU Junxiong, LI Tie, et al. Technologies research review of electro-magnetic suspension medium-low-speed maglev train levitation frame[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 720-733.
    [3] 熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198.

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [4] WANG L D, BU X M, HU P, et al. Dynamic reliability analysis of running safety and stability of a high-speed maglev train on a guideway bridge[J]. International Journal of Structural Stability and Dynamics, 2023: 1-41.
    [5] 翟明达,朱朋博,李晓龙,等. 常导电磁型高速磁浮列车主动导向能力的评估与验证[J]. 西南交通大学学报,2022,57(3): 514-521.

    ZHAI Mingda, ZHU Pengbo, LI Xiaolong, et al. Evaluation and verification for active guidance ability of EMS maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 514-521.
    [6] 陆海英,韩霄翰,李忠继,等. 中低速磁浮系统起浮阶段的振动特性分析[J]. 中国机械工程,2019,30(3): 318-324.

    LU Haiying, HAN Xiaohan, LI Zhongji, et al. Analysis of vibration characteristics of low-medium speed maglev levitation systems in lifting stages[J]. China Mechanical Engineering, 2019, 30(3): 318-324.
    [7] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226.

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.
    [8] 韩霄翰,李忠继,池茂儒. 轨道梁结构对中低速磁浮车轨耦合振动的影响[J]. 铁道机车车辆,2019,39(5): 36-42.

    HAN Xiaohan, LI Zhongji, CHI Maoru. Influence of track beam structure on the mid-low maglev vehicle-rail coupling vibration[J]. Railway Locomotive & Car, 2019, 39(5): 36-42.
    [9] FENG Y, ZHAO C F, WU D H, et al. Effect of levitation gap feedback time delay on the EMS maglev vehicle system dynamic response[J]. Nonlinear Dynamics, 2023, 111(8): 7137-7156. doi: 10.1007/s11071-022-08225-5
    [10] 赵春发,翟婉明. 常导电磁悬浮动态特性研究[J]. 西南交通大学学报,2004,39(4): 464-468.

    ZHAO Chunfa, ZHAI Wanming. Dynamic characteristics of electromagnetic levitation systems[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 464-468.
    [11] 蔡文涛,王春江,滕念管,等. 高速磁浮双向主动控制系统模型参数分析[J]. 力学季刊,2020,41(3): 477-485.

    CAI Wentao, WANG Chunjiang, TENG Nianguan, et al. Study on the parameters of bi-directional active control system for high speed maglev[J]. Chinese Quarterly of Mechanics, 2020, 41(3): 477-485.
    [12] 梁鑫,罗世辉,马卫华. 单磁铁悬浮控制系统反馈参数动力学特性分析[J]. 噪声与振动控制,2012,32(5): 62-66,135.

    LIANG Xin, LUO Shihui, MA Weihua. Dynamic characteristics of feedback coefficient of single magnet suspension control system[J]. Noise and Vibration Control, 2012, 32(5): 62-66,135.
    [13] 汤港归,汪斌,夏翠鹏,等. 磁浮车辆起浮参数控制及其动力性能研究[J]. 铁道科学与工程学报,2023,20(3): 790-801.

    TANG Ganggui, WANG Bin, XIA Cuipeng, et al. Control of levitation parameters and dynamic performance of maglev vehicle[J]. Journal of Railway Science and Engineering, 2023, 20(3): 790-801.
    [14] SUN Y G, HE Z Y, XU J Q, et al. Dynamic analysis and vibration control for a maglev vehicle-guideway coupling system with experimental verification[J]. Mechanical Systems and Signal Processing, 2023, 188: 109954.1-109954.18.
    [15] 杨志南,冯洋,刘东生,等. 悬浮控制参数对磁浮车辆与道岔梁耦合振动的影响分析[J]. 机械,2022,49(2): 38-46.

    YANG Zhinan, FENG Yang, LIU Dongsheng, et al. Influence of levitation control parameters on coupled vibration between maglev vehicles and switch girder[J]. Machinery, 2022, 49(2): 38-46.
    [16] XIANG H Y, TIAN X F, LI Y L, et al. Dynamic interaction analysis of high-speed maglev train and guideway with a control loop failure[J]. International Journal of Structural Stability and Dynamics, 2022, 22(10): 2241012.1-224101228.
    [17] GUO W, CHEN X Y, YE Y T, et al. Coupling vibration analysis of high-speed maglev train-viaduct systems with control loop failure[J]. Journal of Central South University, 2022, 29(8): 2771-2790. doi: 10.1007/s11771-022-5119-1
    [18] 谢云德,常文森. 电磁型(EMS)磁悬浮列车系统铅垂方向的建模与仿真[J]. 铁道学报,1996,18(4): 47-54.

    XIE Yunde, CHANG Wensen. Modeling and simulation of electromagnetic (EMS) maglev train system in vertical direction[J]. Journal of the China Railway Society, 1996, 18(4): 47-54.
    [19] ZHANG L, HUANG J Y. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method[J]. Engineering Structures, 2019, 180: 1-17. doi: 10.1016/j.engstruct.2018.11.031
    [20] 张宝安,虞大联,李海涛,等. 高速磁浮悬浮架柔性特征对曲线通过性能的影响[J]. 西南交通大学学报,2022,57(3): 475-482.

    ZHANG Baoan, YU Dalian, LI Haitao, et al. Influence of flexibility characteristics of levitation chassis on curve negotiation performance of high-speed maglev vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482.
    [21] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210. doi: 10.1076/vesd.38.3.185.8289
    [22] SHI J, FANG W S, WANG Y J, et al. Measurements and analysis of track irregularities on high speed maglev lines[J]. Journal of Zhejiang University-Science A, 2014, 15(6): 385-394. doi: 10.1631/jzus.A1300163
    [23] WANG Z L, XU Y L, LI G Q, et al. Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility[J]. Vehicle System Dynamics, 2019, 57(2): 161-191. doi: 10.1080/00423114.2018.1450517
    [24] SHI J, WANG Y J. Dynamic response analysis of single-span guideway caused by high speed maglev train[J]. Latin American Journal of Solids and Structures, 2011, 8(3): 213-228. doi: 10.1590/S1679-78252011000300001
    [25] XU Y L, WANG Z L, LI G Q, et al. High-speed running maglev trains interacting with elastic transitional viaducts[J]. Engineering Structures, 2019, 183: 562-578. doi: 10.1016/j.engstruct.2019.01.012
    [26] 徐金辉,王平,汪力,等. 基于频域分析方法的轨道高低不平顺敏感波长的研究[J]. 中南大学学报(自然科学版),2016,47(2): 683-689.

    XU Jinhui, WANG Ping, WANG Li, et al. Sensitive wavelengths of vertical track irregularities by frequency-domain method[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 683-689.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  134
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 修回日期:  2023-12-17
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回