• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制

周扬 周瑾 王艺宇 张越 徐园平

周扬, 周瑾, 王艺宇, 张越, 徐园平. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230510
引用本文: 周扬, 周瑾, 王艺宇, 张越, 徐园平. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230510
ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230510
Citation: ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230510

考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制

doi: 10.3969/j.issn.0258-2724.20230510
基金项目: 国家自然科学基金(52075239)
详细信息
    作者简介:

    周扬(1996—),男,博士研究生,研究方向为磁悬浮轴承、界面接触,E-mail:zhouyang0216@nuaa.edu.cn

    通讯作者:

    周瑾(1972—),女,教授,研究方向为磁悬浮技术、旋转机械、机电系统控制、振动控制,E-mail:zhj@nuaa.edu.cn

  • 中图分类号: TH133.3

Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact

  • 摘要:

    磁悬浮轴承-转子系统中,螺栓连接装配形成的界面接触会在转子悬浮状态下激发弯曲模态振动,同时振动频率随转速明显变化. 为实现全转速范围内对弯曲模态振动的主动控制,提出一种考虑频率不确定性的H∞鲁棒控制器设计方法. 首先,通过建立考虑界面接触的动力学模型进行仿真预测,获得振动频率的变化范围;其次,通过频响拟合的方式对转子传递函数进行重构,并将仿真得到的振动频率变化范围以加性不确定性方式引入到重构传递函数中,得到考虑模态频率不确定性的被控对象模型;最后,基于该模型设计兼顾参数摄动和外力扰动的鲁棒性、闭环系统稳定性和防止控制电压饱和等多功能的H∞鲁棒控制器. 数值仿真结果表明:该控制器在模态频率处具有宽频带阻的频响特性,能够抑制磁悬浮轴承转子系统的弯曲模态振动;采用该方法设计的H∞鲁棒控制器后,转子弯曲模态振动幅值减小90%以上.

     

  • 图 1  磁悬浮轴承-转子实验台

    Figure 1.  Magnetic bearing-rotor test rig

    图 2  磁悬浮轴承-转子系统动力学模型

    Figure 2.  Dynamics model of magnetic bearing-rotor system

    图 3  径向磁悬浮轴承结构

    Figure 3.  Radial magnetic bearing structure

    图 4  界面接触示意

    Figure 4.  Interface contact

    图 5  转子和盘接触面实际接触状态示意

    Figure 5.  Actual contact between rotor and disk

    图 6  磁悬浮轴承转子系统静态悬浮仿真响应

    Figure 6.  Static levitation simulation response of magnetic bearing-rotor system

    图 7  磁悬浮轴承转子系统静态悬浮实验响应

    Figure 7.  Static levitation experiment response of magnetic bearing-rotor system

    图 8  磁悬浮轴承-转子系统升速仿真

    Figure 8.  Run-up simulation of magnetic bearing-rotor system

    图 9  混合灵敏度控制框图

    Figure 9.  Mixed sensitivity control

    图 10  S(s)和W1−1(s)奇异值曲线

    Figure 10.  Singular value curves of S(s) and W1−1(s)

    图 11  T(s)和W3−1(s)奇异值曲线

    Figure 11.  Singular value curves of T(s) and W3−1(s)

    图 12  等效传递函数框图

    Figure 12.  Equivalent transfer function

    图 13  被控对象扫频试验原理框图

    Figure 13.  Sweep frequency experiment principle for controlled object

    图 14  被控系统频响曲线

    Figure 14.  Frequency response curve of controlled system

    图 15  加性不确定的近似

    Figure 15.  Approximation with additive uncertainty

    图 16  控制器频响特性

    Figure 16.  Frequency response characteristics of controller

    图 17  闭环系统动态柔度

    Figure 17.  Dynamic compliance of closed-loop system

    图 18  转子静态悬浮仿真响应

    Figure 18.  Static levitation simulation response of rotor

    图 19  转子升速仿真响应

    Figure 19.  Run-up simulation response of rotor

    图 20  转子静态悬浮实验响应

    Figure 20.  Static levitation experiment response of rotor

    图 21  转子升速实验响应

    Figure 21.  Run-up experiment response of rotor

    表  1  径向磁悬浮轴承结构参数

    Table  1.   Structural parameters of radial magnetic bearing

    参数 取值
    单个磁极匝数 N/匝 75
    单个磁极面积 A/m2 4.05 × 10-4
    偏置电流 I0/A 2
    单边气隙 C0/mm 0.25
    下载: 导出CSV

    表  2  理论和试验弯曲模态频率

    Table  2.   Theoretical and experimental bending mode frequencies Hz

    弯曲模态阶数 理论值 试验值
    1 91.26 91.83
    2 255.14 257.12
    3 526.41 519.53
    4 816.02 817.46
    5 1046.77 1032.57
    下载: 导出CSV
  • [1] SCHWEITZER G, MASLEN E, BLEULER H, et al. Magnetic bearing:theory, design and application to rotating machinery[M]. Berlin:Springer-Verilog, 2009:11-12.
    [2] YANNICK P,JEFFREY S,王小明. 应用API617第8版配备磁悬浮轴承的透平膨胀机-压缩机[J]. 风机技术,2016,58(5): 6-18.
    [3] HUTTERER M, SCHRÖDL M. Modeling and mu-synthesis control of a flexible rotor stabilized by active magnetic bearings including current free control[J]. Journal of Sound and Vibration, 2023, 546:117439.1-117439.18.
    [4] INOUE T, LIU J, ISHIDA Y, et al. Vibration control and unbalance estimation of a nonlinear rotor system using disturbance observer[J]. Journal of Vibration and Acoustics, 2009, 131(3): 031010.1-031010.8.
    [5] LI K X, PENG C, DENG Z Q, et al. Field dynamic balancing for active magnetic bearings supporting rigid rotor shaft based on extended state observer[J]. Mechanical Systems and Signal Processing, 2021, 158: 107801.1-107801.14.
    [6] TANG E Q, HAN B C, ZHANG Y. Optimum compensator design for the flexible rotor in magnetically suspended motor to pass the first bending critical speed[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 343-354. doi: 10.1109/TIE.2015.2472534
    [7] JIN C W, XIONG F, BAO Z P, et al. Research on modal vibration suppression of maglev steel strip based on phase compensator[J]. Journal of Sound and Vibration, 2018, 434: 78-91. doi: 10.1016/j.jsv.2018.07.043
    [8] PENG C, ZHENG S Q, HUANG Z Y, et al. Complete synchronous vibration suppression for a variable-speed magnetically suspended flywheel using phase lead compensation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5837-5846. doi: 10.1109/TIE.2017.2782204
    [9] ZHENG S Q, HAN B C, WANG Y G, et al. Optimization of damping compensation for a flexible rotor system with active magnetic bearing considering gyroscopic effect[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1130-1137. doi: 10.1109/TMECH.2014.2344664
    [10] ROY H K, DAS A S, DUTT J K. An efficient rotor suspension with active magnetic bearings having viscoelastic control law[J]. Mechanism and Machine Theory, 2016, 98: 48-63. doi: 10.1016/j.mechmachtheory.2015.11.012
    [11] TANG E Q, FANG J C, HAN B C. Active vibration control of the flexible rotor in high energy density magnetically suspended motor with mode separation method[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(8): 082503.1-082503.10.
    [12] HAN X M, ZHOU J, ZHOU Y. Analysis and suppression of self-excited vibration of flexible rotor AMBs system[J]. Journal of Vibration Engineering & Technologies, 2021, 9(8): 1911-1922.
    [13] 魏彤,房建成. 基于双频Bode图设计磁悬浮弹性转子陷波器[J]. 光学 精密工程,2008,16(5): 789-796.

    WEI Tong, FANG Jiancheng. Design of magnetically suspended elastic rotor Notch filter based on two-frequency Bode diagram[J]. Optics and Precision Engineering, 2008, 16(5): 789-796.
    [14] 崔培玲,赵光再,房建成,等. 基于相移陷波器的磁轴承不平衡振动全频自适应控制[J]. 振动与冲击,2015,34(20): 16-20,36.

    CUI Peiling, ZHAO Guangzai, FANG Jiancheng, et al. Adaptive control of unbalance vibration for magnetic bearings based on phase-shift Notch filter within the whole frequency range[J]. Journal of Vibration and Shock, 2015, 34(20): 16-20,36.
    [15] MUSHI S E, LIN Z, ALLAIRE P E. Stability analysis for a flexible rotor on active magnetic bearings subject to aerodynamic loads[C]//Proceedings of the 12th international symposium on magnetic bearings. Yokohama:[s.n.], 2010:22-25.
    [16] RAN S L, HU Y F, WU H C. Design, modeling, and robust control of the flexible rotor to pass the first bending critical speed with active magnetic bearing[J]. Advances in Mechanical Engineering, 2018, 10(2): 1-13.
    [17] 谭大力,陈进,廖明夫,等. 圆柱面配合激起的转子失稳振动研究[J]. 机械科学与技术,2014,33(12): 1786-1790.

    TAN Dali, CHEN Jin, LIAO Mingfu, et al. Instability caused by cylindrical surface fit in rotor system[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1786-1790.
    [18] 曾瑶,陈亮,蒋云帆,等. 圆柱面配合对柔性转子稳定性的影响[J]. 燃气涡轮试验与研究,2019,32(2): 42-48. doi: 10.3969/j.issn.1672-2620.2019.02.008

    ZENG Yao, CHEN Liang, JIANG Yunfan, et al. Analysis on the impact of cylindrical surface fit on flexible rotor[J]. Gas Turbine Experiment and Research, 2019, 32(2): 42-48. doi: 10.3969/j.issn.1672-2620.2019.02.008
    [19] LIU Y, LIU H, YI J, et al. Investigation on the stability and bifurcation of a rod-fastening rotor bearing system[J]. Journal of Vibration and Control, 2015, 21(14): 2866-2880. doi: 10.1177/1077546313518817
    [20] WU X L, JIAO Y H, CHEN Z B, et al. Establishment of a contact stiffness matrix and its effect on the dynamic behavior of rod-fastening rotor bearing system[J]. Archive of Applied Mechanics, 2021, 91(7): 3247-3271. doi: 10.1007/s00419-021-01963-9
    [21] 魏彤,房建成. 磁悬浮控制力矩陀螺高速转子高频自激振动的抑制[J]. 宇航学报,2006,27(2): 291-296. doi: 10.3321/j.issn:1000-1328.2006.02.029

    WEI Tong, FANG Jiancheng. Self-excited vibration depression of high-speed rotor in magnetically suspended control moment gyroscope[J]. Journal of Astronautics, 2006, 27(2): 291-296. doi: 10.3321/j.issn:1000-1328.2006.02.029
    [22] ZHOU Y, ZHOU J, MAHFOUD J, et al. Modelling and Validation of Rotor-Active Magnetic Bearing System Considering Interface Contact[C]//Proceedings of the 11th IFToMM International Conference on Rotordynamics. Mechanisms and Machine Science. Berlin:Springer, 2023:374-390.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  19
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-30
  • 录用日期:  2024-04-28
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-18

目录

    /

    返回文章
    返回