• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

冲击激励下轴线失准转子-磁轴承系统不对中定量研究

肖玲 李园超 赵晨曦 程文杰 冯圣

肖玲, 李园超, 赵晨曦, 程文杰, 冯圣. 冲击激励下轴线失准转子-磁轴承系统不对中定量研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230454
引用本文: 肖玲, 李园超, 赵晨曦, 程文杰, 冯圣. 冲击激励下轴线失准转子-磁轴承系统不对中定量研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230454
XIAO Ling, LI Yuanchao, ZHAO Chenxi, CHENG Wenjie, FENG Sheng. Quantitative Research on Misalignment Magnitude of Rotor-Magnetic Bearing System with Axis Misalignment under Shock Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230454
Citation: XIAO Ling, LI Yuanchao, ZHAO Chenxi, CHENG Wenjie, FENG Sheng. Quantitative Research on Misalignment Magnitude of Rotor-Magnetic Bearing System with Axis Misalignment under Shock Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230454

冲击激励下轴线失准转子-磁轴承系统不对中定量研究

doi: 10.3969/j.issn.0258-2724.20230454
基金项目: 国家自然科学基金(52275271),陕西省自然科学基金(2022JM-194)
详细信息
    作者简介:

    肖玲(1983—) ,女,教授,博士,研究方向为电磁轴承、高速电机转子、软磁复合材料,E-mail:xiaoling@xust.edu.cn

  • 中图分类号: TH133.3

Quantitative Research on Misalignment Magnitude of Rotor-Magnetic Bearing System with Axis Misalignment under Shock Excitation

  • 摘要:

    为研究和识别转子系统在轴承处发生的平行角度混合不对中,提出一种频谱辨识转子-磁轴承系统固有不对中量大小的方法. 采用动量矩定理将圆盘不平衡力对转轴的影响等效到转子轴向力上,建立考虑轴向径向耦合效应的刚性双偏置圆盘转子-磁轴承系统的动力学模型;通过SIMULINK仿真得到系统时域下的位移和电流响应,分析不对中条件下转子系统动力学特性,并利用快速傅里叶变换将时域响应转换为频域响应,基于频域下最小二乘算法得到转子系统不对中量大小. 结果表明:在冲击激励影响条件下,采用该方法计算的不对中量大小误差均在5.0%以内,当转子受到外界扰动力时,该算法能够准确定量识别转子的不对中量,可为不对中转子-磁轴承系统故障诊断及自修复提供理论参考.

     

  • 图 1  刚性双偏置圆盘转子-磁轴承系统模型

    Figure 1.  Model of a rigid double offset disc rotor-magnetic bearing system

    图 2  圆盘1形心和重心位置关系

    Figure 2.  Relationship between shape center and gravity center for disc 1

    图 3  动力学模型仿真

    Figure 3.  Dynamics model simulation

    图 4  转子受冲击后轴心轨迹图

    Figure 4.  Axial trajectory of rotor subjected to impact

    图 5  不同转速下径向磁轴承处位移、电流稳态响应

    Figure 5.  Steady-state response of displacement and current at radial magnetic bearing at different rotational speeds

    图 6  不同转速下混合磁轴承处位移、电流稳态响应

    Figure 6.  Steady-state response of displacement and current at hybrid magnetic bearing at different rotational speeds

    图 7  不同噪声影响下计算的不对中量误差百分比

    Figure 7.  Percentage of misalignment error calculated under different noise interferences

    表  1  系统结构参数与仿真参数

    Table  1.   System structure parameters and simulation parameters

    参数 大小 参数 大小
    M/kg
    l/m
    3.910
    0.400
    s0/ mm 0.400
    md1/ kg 1.065 δx1,δx2/ mm 0.140,0.150
    md2/ kg 2.081 δy1,δy2/ mm 0.160,0.145
    e1e2/μm 80,100 δz2,Δx1/ mm 0.130,0.100
    $ {e_{{\textit{z}}1}},{e_{{\textit{z}}2}} $/μm 8,10 Δy1,Δx2/ mm 0.130,0.120
    β1β2/ deg 20,30 Δy2Δz2/ mm 0.110,0.150
    Id/( kg·m2 0.0455 KP/(A·m−1 5500
    a1/ mm 0.226 mm KI/ (A·(m·s)−1 8000
    a2/ mm 0.174 mm KD/(A·s·m−1 3
    b1/ mm 0.126 R
    t /ms
    20,6
    Ip1/( kg·m2 0.0019 b2/ mm 0.074
    Ip2/(kg·m2 0.0059
    下载: 导出CSV

    表  2  频域下的径向磁轴承处转子位移和控制电流响应

    Table  2.   Rotor displacement and control current response at radial magnetic bearing in frequency domain

    频率/
    Hz
    i位移电流
    幅值/A相位/(°)幅值/m相位/(°)
    3003.69 × 10−9−16.090.929−132.73
    11.36 × 10−4−32.430.754152.99
    3501.13 × 10−9112.790.930−133.20
    11.83 × 10−4−61.971.016124.49
    下载: 导出CSV

    表  3  无噪声影响下不对中量实际值和估计值比较

    Table  3.   Comparison of actual and estimated values of misalignment without noise interference

    不对中量实际值/mm估计值/mm误差/%
    δx10.1400.1388−0.857
    δy10.1600.1575−1.563
    δx20.1500.1439−4.067
    δy20.1450.14560.414
    δz20.1300.1285−1.154
    下载: 导出CSV
  • [1] 陈宏,雷文平,陈磊,等. 一种转子动态不对中量计算方法[J]. 中国机械工程,2016,27(17): 2379-2383. doi: 10.3969/j.issn.1004-132X.2016.17.018

    CHEN Hong, LEI Wenping, CHEN Lei, et al. A novel quantitive calculation method of dynamic misalignment in rotor systems[J]. China Mechanical Engineering, 2016, 27(17): 2379-2383. doi: 10.3969/j.issn.1004-132X.2016.17.018
    [2] 甄满,田拥胜,孙涛,等. 具有不对中故障的双跨转子系统非线性动力学特性[J]. 机械工程学报,2020,56(16): 109-117. doi: 10.3901/JME.2020.16.109

    ZHEN Man, TIAN Yongsheng, SUN Tao, et al. Nonlinear dynamics of two-span rotor-bearing system with flexible coupling misalignment[J]. Journal of Mechanical Engineering, 2020, 56(16): 109-117. doi: 10.3901/JME.2020.16.109
    [3] SHARI A, ALI A A, ALMUDHAFFER M. Combination of FFT & ICA methods for faults analysis of rotating machine[C]//Proceedings of the Information Conference on Information and Communication Technology, New York:[s.n.], 2019:196-202.
    [4] KUPPA S K, LAL M. Dual flexible rotor system with active magnetic bearings for unbalance and coupling misalignment faults analysis[J]. Sādhanā, 2019, 44(8):188.1-188.16.
    [5] LEES A W, SINHA J K, FRISWELL M I. Estimating rotor unbalance and misalignment from a single Run-down[J]. Materials Science Forum, 2003, 440/441: 229-236. doi: 10.4028/www.scientific.net/MSF.440-441.229
    [6] KUMAR P, TIWARI R. Development of a novel approach for quantitative estimation of rotor unbalance and misalignment in a rotor system levitated by active magnetic bearings[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2021, 45: 769-786. doi: 10.1007/s40997-020-00364-7
    [7] KÄRKKÄINEN A, HELFERT M, AESCHLIMANN B, et al. Dynamic analysis of rotor system with misaligned retainer bearings[J]. Journal of Tribology-transactions of The Asme, 2008, 130: 319-320.
    [8] KUMAR P, TIWARI R. A numerical study on the effect of unbalance and misalignment fault parameters in a rigid rotor levitated by active magnetic bearings. [C]//ASME 2019 GasTurbine India Conference. [S.L.]:American Society of Mechanical Engineers, 2019:1-7.
    [9] KUMAR P, TIWARI R. Dynamic analysis and identification of unbalance and misalignment in a rigid rotor with two offset discs levitated by active magnetic bearings: a novel trial misalignment approach[J]. Propulsion and Power Research, 2021, 10(1): 58-82. doi: 10.1016/j.jppr.2020.06.003
    [10] TIWARI R, KUMAR P. An innovative virtual trial misalignment approach for identification of unbalance, sensor and active magnetic bearing misalignment along with its stiffness parameters in a magnetically levitated flexible rotor system[J]. Mechanical Systems and Signal Processing, 2022, 167: 108540.1-108540.30.
    [11] 汤华涛,吴新跃,刘海涛. 转子横向运动对轴向振动的影响分析[J]. 华中科技大学学报(自然科学版),2013,41(10): 74-78.

    TANG Huatao, WU Xinyue, LIU Haitao. Influence of a rotor′s lateral motion on its axial vibration[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(10): 74-78.
    [12] 朱熀秋,王绍帅. 六极径向–轴向主动磁轴承电磁特性分析及实验研究[J]. 中国电机工程学报,2020,40(5): 1653-1663.

    ZHU Huangqiu, WANG Shaoshuai. Electromagnetic characteristics analysis and experiment study of six-pole radial-axial active magnetic bearing[J]. Proceedings of the CSEE, 2020, 40(5): 1653-1663.
    [13] 汪希平,朱礼进,于良,等. 主动磁轴承转子系统动力学特性的研究[J]. 机械工程学报,2001,37(11): 7-12. doi: 10.3321/j.issn:0577-6686.2001.11.002

    WANG Xiping, ZHU Lijin, YU Liang, et al. Investigation on dynamic performance of active magnetic bearing rotor system[J]. Chinese Journal of Mechanical Engineering, 2001, 37(11): 7-12. doi: 10.3321/j.issn:0577-6686.2001.11.002
    [14] DARPE A, CHAWLA A, GUPTA K. Analysis of the response of a crachked Jeffcott rotor to axial excitation[J]. Jouranl of Sound and Vibration, 2002, 249(3): 429-445. doi: 10.1006/jsvi.2001.3870
    [15] 邹博,徐园平,周瑾. 冲击激励下磁悬浮转子系统的响应特性分析[J]. 机械制造与自动化,2020,49(5): 41-43.

    ZOU Bo, XU Yuanping, ZHOU Jin. Analysis of response characteristics of magnetic suspension rotor system under shock excitation[J]. Machine Building & Automation, 2020, 49(5): 41-43.
    [16] 陈伟,吴泽宇,韩佳奇,等. 突加基础冲击激励下转子系统振动特性试验[J]. 航空动力学报,2023,38(4): 878-888.

    CHEN Wei, WU Zeyu, HAN Jiaqi, et al. Test on vibration characteristics of rotor system under sudden base shock excitation[J]. Journal of Aerospace Power, 2023, 38(4): 878-888.
    [17] SINGH S, TIWARI R. Model-based fatigue crack identification in rotors integrated with active magnetic bearings[J]. Journal of Vibration and Control, 2017, 23(6): 980-1000. doi: 10.1177/1077546315587146
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  30
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 录用日期:  2024-04-10
  • 修回日期:  2024-03-22
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回