• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

双车道公路超车行为风险演化时间协变量建模

戢晓峰 徐迎豪 郝京京 覃文文

戢晓峰, 徐迎豪, 郝京京, 覃文文. 双车道公路超车行为风险演化时间协变量建模[J]. 西南交通大学学报, 2025, 60(5): 1240-1249. doi: 10.3969/j.issn.0258-2724.20230449
引用本文: 戢晓峰, 徐迎豪, 郝京京, 覃文文. 双车道公路超车行为风险演化时间协变量建模[J]. 西南交通大学学报, 2025, 60(5): 1240-1249. doi: 10.3969/j.issn.0258-2724.20230449
JI Xiaofeng, XU Yinghao, HAO Jingjing, QIN Wenwen. Time Covariate Modeling of Overtaking Risk Evolution on Two-Lane Highways[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1240-1249. doi: 10.3969/j.issn.0258-2724.20230449
Citation: JI Xiaofeng, XU Yinghao, HAO Jingjing, QIN Wenwen. Time Covariate Modeling of Overtaking Risk Evolution on Two-Lane Highways[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1240-1249. doi: 10.3969/j.issn.0258-2724.20230449

双车道公路超车行为风险演化时间协变量建模

doi: 10.3969/j.issn.0258-2724.20230449
基金项目: 国家自然科学基金项目(52062024);云南省交通运输厅科技创新及示范项目(2022-27(二));云南省基础研究计划面上项目(202401AT070309)
详细信息
    作者简介:

    戢晓峰(1982—),男,教授,研究方向为交通规划与交通安全,E-mail:yiluxinshi@sina.com

    通讯作者:

    覃文文(1986—),男,讲师,研究方向为交通安全,E-mail: qinww@kust.edu.cn

  • 中图分类号: U491.31

Time Covariate Modeling of Overtaking Risk Evolution on Two-Lane Highways

  • 摘要:

    为获取双车道公路超车行为风险演化的时间特征,在利用超车风险视距指标分析超车风险演化特征的基础上,提出基于改进形状参数协变量建模方法的全参数AFT (accelerated failure time)模型预测路段期望超车时间,并通过无人机采集典型超车路段场景的328组完整超车轨迹数据进行实例分析和对比验证. 结果表明:超车风险演化时间包括风险递增(T1)和风险递减(T2)两阶段,平均超车距离分别为141.10、99.41 m,平均持续时间分别为8.18、5.61 s,超速超车现象严重;对向来车对T1阶段有延长作用,超越货车对T1阶段有缩短作用,场景异质性影响特征明显;全参数AFT模型在数据拟合度和异质性捕获能力方面更具优势,超车速度均值、超车距离和相对横向偏移标准差为模型关键协变量;预测得到在1%的生存率下3个研究场景的期望超车时间范围分别为18~93、18~50 s和18~39 s. 本文扩展了双车道公路超车持续时间建模方法,对于已建成路段超车安全管控和规划路段道路设计具有重要价值.

     

  • 图 1  双车道公路数据采集场景

    Figure 1.  Two-lane highway data collection scenarios

    图 2  无人机同步交通流视频数据采集示意

    Figure 2.  Schematic diagram of UAV-synchronized traffic flow video data collection

    图 3  完整超车轨迹数据

    Figure 3.  Complete overtaking trajectory data

    图 4  超车风险演化趋势

    Figure 4.  Evolution trend of overtaking risk

    图 5  超车阶段定义示意

    Figure 5.  Schematic diagram of overtaking phase

    图 6  不同超越对象风险持续时间累计频率特征

    Figure 6.  Cumulative frequency characteristics of risk duration with different overtaken vehicles

    图 7  t1与超越时刻相关性

    Figure 7.  Correlation between t1 and overtaking moment

    图 8  T1T2两阶段生存函数

    Figure 8.  Survival functions of T1 and T2

    图 9  协变量生存函数

    Figure 9.  Covariate-based survival functions

    图 10  路段期望超车时间生存函数曲线预测

    Figure 10.  Predicted survival curves of expected overtaking time for road sections

    表  1  特征变量

    Table  1.   Characteristic variables

    变量类型 符号 说明
    行为特征 VSm/(m•s−1 主车速度均值
    VFm/(m•s−1 被超越车速度均值
    ASm/(m•s−2 主车加速度均值
    AFm/(m•s−2 被超越车加速度均值
    VSsd/(m•s−1 主车速度标准差
    VFsd/(m•s−1 被超越车速度标准差
    ASsd/(m•s−2 主车加速度标准差
    AFsd/(m•s−2 被超越车加速度标准差
    相对特征 Vm/(m•s−1 速度差均值
    Hm/m 相对偏移均值
    Tm/s 车头时距均值
    Wm/m 车头间距均值
    Vsd/(m•s−1 速度差标准差
    Hsd/m 相对偏移标准差
    Tsd/s 车头时距标准差
    Wsd/m 车头间距标准差
    其他特征 Ttime/s 超车总时间
    Ddistance/m 超车总距离
    I 是否有对向来车(0:无,1:有)
    OF 被超越车类型(0:乘用车,1:货车)
    下载: 导出CSV

    表  2  特征变量描述性统计

    Table  2.   Descriptive statistics of characteristic variables

    阶段 类型 Ttime Ddistance VSm ASm VFm AFm VSsd ASsd VFsd AFsd
    T1均值8.18 s141.10 m17.33 m/s0.40 m/s214.85 m/s0.08 m/s21.78 m/s0.60 m/s20.73 m/s0.41 m/s2
    方差3.62 s251.24 m25.82 m2/s20.54 m2/s44.98 m2/s20.41 m2/s43.46 m2/s20.50 m2/s41.07 m2/s20.29 m2/s4
    最大值21.84 s306.18 m31.60 m/s1.98 m/s226.68 m/s3.49 m/s259.51 m/s4.92 m/s211.13 m/s2.50 m/s2
    最小值1.83 s31.26 m4.48 m/s−2.41 m/s22.28 m/s−1.54 m/s20.03 m/s0.18 m/s20.03 m/s0.07 m/s2
    T2均值5.61 s99.41 m19.95 m/s0.24 m/s213.90 m/s0.04 m/s20.97 m/s0.58 m/s20.44 m/s0.40 m/s2
    方差2.91 s247.70 m27.10 m2/s20.74 m2/s44.93 m2/s20.39 m2/s42.12 m2/s20.59 m2/s40.62 m2/s20.41 m2/s4
    最大值21.30 s387.69 m94.95 m/s3.10 m/s247.77 m/s2.52 m/s232.94 m/s4.94 m/s28.11 m/s3.50 m/s2
    最小值1.00 s12.19 m4.02 m/s−2.41 m/s23.11 m/s−0.92 m/s20.02 m/s00.03 m/s0
    阶段类型VmHmWmTmVsdHsdWsdTsdIOF
    T1均值3.48 m/s1.90 m5.89 m8.93 s1.77 m/s1.01 m3.85 m5.45 s0.230.32
    方差2.83 m2/s21.50 m214.33 m29.70 s23.47 m2/s20.36 m27.45 m25.03 s20.420.47
    最大值26.78 m/s4.26 m113.96 m45.10 s59.51 m/s2.01 m79.28 m25.62 s1.001.00
    最小值−4.74 m/s−3.48 m−30.47 m−33.67 s0.03 m/s0.03 m0.09 m0.19 s00
    T2均值9.69 m/s2.28 m−3.64 m−8.93 s0.99 m/s0.77 m3.80 m6.18 s0.220.31
    方差7.02 m2/s21.67 m29.45 m210.92 s22.11 m2/s20.40 m26.42 m25.36 s20.410.46
    最大值94.95 m/s5.88 m27.52 m16.28 s32.94 m/s2.34 m58.51 m24.49 s1.001.00
    最小值−2.73 m/s−3.97 m−67.89 m−37.47 s0.02 m/s0.01 m0.05 m0.09 s00
    下载: 导出CSV

    表  3  固定效应AFT参数估计(对$\lambda $建模)

    Table  3.   Parameter estimation of fixed effect AFT (for $\lambda $ modeling)

    演化阶段 协变量 β exp(β) SE Z P CI95(β)
    下限 上限
    T1 VSm −0.047 0.954 0.002 −27.550 < 0.0005 −0.051 −0.044
    Hsd 0.045 1.046 0.030 1.509 0.1310 −0.014 0.104
    Ddistance 0.007 1.007 0 24.858 < 0.0005 0.006 0.007
    Iβ 1.852 6.370 0.047 39.027 < 0.0005 1.759 1.945
    对数似然值 331.422
    AIC 1111.154
    T2 VSm −0.043 0.958 0.001 −41.027 < 0.0005 −0.045 −0.041
    Hsd 0.158 1.171 0.029 5.459 < 0.0005 0.101 0.215
    Ddistance 0.009 1.010 0 35.353 < 0.0005 0.009 0.010
    Iβ 1.453 4.277 0.026 55.405 < 0.0005 1.402 1.505
    对数似然值 483.496
    AIC 820.904
    注:T1阶段,$ \lambda ({\boldsymbol{x}})\text{=}\mathrm{exp}(1.852-0.047x_1 + 0.045x_2 + 0.007x_3),\rho \text{=1}\text{.773} $;T2阶段,$ \lambda ({\boldsymbol{x}})\text{=}\mathrm{exp}(1.453-0.043x_1 + 0.158x_2 + $$0.009x_3), \rho \text{=1}\text{.892} $.
    下载: 导出CSV

    表  4  全参数AFT参数估计(对$\lambda $和$\rho $建模)

    Table  4.   Parameter estimation of full-parameter AFT (for$\lambda $ and $\rho $ modeling)

    演化阶段 协变量 β exp(β) SE Z P CI95(β)
    下限 上限
    T1 VSm −0.046 0.955 0.002 −24.95 < 0.0005 −0.05 −0.043
    Hsd 0.067 1.069 0.030 2.249 0.0250 0.009 0.125
    Ddistance 0.006 1.006 0 21.822 < 0.0005 0.006 0.007
    Iβ 1.843 6.312 0.058 31.954 < 0.0005 1.730 1.956
    对数似然值 336.534
    AIC 1095.151
    T2 VSm −0.036 0.964 0.001 −58.397 < 0.0005 −0.038 −0.035
    Hsd 0.097 1.102 0.015 6.367 < 0.0005 0.067 0.127
    Ddistance 0.009 1.009 0 53.504 < 0.0005 0.008 0.009
    Iβ 1.457 4.294 0.016 91.723 < 0.0005 1.426 1.488
    对数似然值 657.200
    AIC 568.960
    注:T1阶段,$ \lambda ({\boldsymbol{x}}){\text{ = }}\exp (1.843 - 0.046x_1 + 0.067x_2 + 0.006x_3) $,$\rho ({\boldsymbol{x}}){\text{ = }}\exp (1.011 + 0.013x_1 + 0.462x_2 + 0.001x_3) $;T2阶段,$ \lambda ({\boldsymbol{x}}){\text{ = }}\exp (1.457 - 0.036x_1 + 0.097x_2 + 0.009x_3) $,$ \rho ({\boldsymbol{x}}){\text{ = }}\exp ( - 0.160 + 0.062x_1 + 1.324x_2 + 0.002x_3) $.
    下载: 导出CSV

    表  5  不同生存率下路段期望超车时间

    Table  5.   Expected overtaking time under different survival rates

    生存率 路段 下限/s 上限/s
    0.01 路段 1 17.969 93.303
    路段 2 50.365
    路段 3 39.314
    0.05 路段 1 15.820 77.825
    路段 2 41.902
    路段 3 30.588
    0.15 路段 1 14.859 70.610
    路段 2 38.256
    路段 3 27.873
    下载: 导出CSV
  • [1] 徐进, 杨奎, 鲁工圆, 等. 基于自然驾驶的山区公路行驶舒适性研究[J]. 西南交通大学学报, 2017, 52(2): 309-318. doi: 10.3969/j.issn.0258-2724.2017.02.014

    XU Jin, YANG Kui, LU Gongyuan, et al. Investigation on driving comfort of passenger cars on mountain roads based on naturalistic driving[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 309-318. doi: 10.3969/j.issn.0258-2724.2017.02.014
    [2] WU Q, CHEN F, ZHANG G H, et al. Mixed logit model-based driver injury severity investigations in single- and multi-vehicle crashes on rural two-lane highways[J]. Accident Analysis & Prevention, 2014, 72: 105-115.
    [3] PAN J, SHEN Y J. Assessing driving risk at the second phase of overtaking on two-lane highways for young novice drivers based on driving simulation[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 2691.1-2691.13.
    [4] 徐婷, 邓恺龙, 刘永涛, 等. 基于航测数据的不同风格换道轨迹规划[J]. 西南交通大学学报, 2024, 59(3): 720-728. doi: 10.3969/j.issn.0258-2724.20230392

    XU Ting, DENG Kailong, LIU Yongtao, et al. Different style lane change trajectory planning based on aerial survey data[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 720-728. doi: 10.3969/j.issn.0258-2724.20230392
    [5] 吴德华, 彭锐, 陈荣峰. 异质流网联车的不同换道集聚策略[J]. 西南交通大学学报, 2023, 58(2): 348-356.

    WU Dehua, PENG Rui, CHEN Rongfeng. Different lane change agglomeration strategies of connected vehicles in heterogeneous flow networks[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 348-356.
    [6] 赵建东, 赵志敏, 屈云超, 等. 轨迹数据驱动的车辆换道意图识别研究[J]. 交通运输系统工程与信息, 2022, 22(4): 63-71.

    ZHAO Jiandong, ZHAO Zhimin, QU Yunchao, et al. Vehicle lane change intention recognition driven by trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 63-71.
    [7] SHANGGUAN Q Q, FU T, WANG J H, et al. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns[J]. Accident Analysis & Prevention, 2022, 164: 106500.1-106500.14.
    [8] CHEN Q H, HUANG H L, LI Y, et al. Modeling accident risks in different lane-changing behavioral patterns[J]. Analytic Methods in Accident Research, 2021, 30: 100159.1-100159.20.
    [9] LI Y, GU R F, LEE J, et al. The dynamic tradeoff between safety and efficiency in discretionary lane-changing behavior: a random parameters logit approach with heterogeneity in means and variances[J]. Accident Analysis & Prevention, 2021, 153: 106036.1-106036.7.
    [10] YANG M M, WANG X S, QUDDUS M. Examining lane change gap acceptance, duration and impact using naturalistic driving data[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 317-331. doi: 10.1016/j.trc.2019.05.024
    [11] ALI Y, HAQUE M M, ZHENG Zuduo, et al. A hazard-based duration model to quantify the impact of connected driving environment on safety during mandatory lane-changing[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 113-131. doi: 10.1016/j.trc.2019.07.015
    [12] 戢晓峰, 戴秉佑, 普永明, 等. 基于生存分析的山区双车道公路超车持续时间模型[J]. 交通运输系统工程与信息, 2022, 22(6): 183-190.

    JI Xiaofeng, DAI Bingyou, PU Yongming, et al. Overtaking duration model of two-lane mountainous highways based on survival analysis[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 183-190.
    [13] PARK H, OH C, MOON J, et al. Development of a lane change risk index using vehicle trajectory data[J]. Accident Analysis & Prevention, 2018, 110: 1-8.
    [14] WILSON T, BEST W. Driving strategies in overtaking[J]. Accident Analysis & Prevention, 1982, 14(3): 179-185.
    [15] 刘启远, 孙剑, 田野, 等. 机非交互路段非机动车越线超车行为建模与仿真[J]. 同济大学学报(自然科学版), 2019, 47(11): 1585-1592, 1599.

    LIU Qiyuan, SUN Jian, TIAN Ye, et al. Modeling and simulation of cross-line overtaking behavior of non-motorized vehicles at mixed flow road section[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1585-1592, 1599.
    [16] 戢晓峰, 徐迎豪, 普永明, 等. 山区双车道公路货车移动遮断小客车跟驰风险预测模型[J]. 吉林大学学报 (工学版), 2024, 54(5): 1323-1331.

    JI Xiaofeng, XU Yinghao, PU Yongming, et al. Risk prediction model of passenger car following behavior under truck movement interruption of two-lane highway in mountainous area[J], Journal of Jilin University (Engineering and Technology Edition), 2024, 54(5): 1323-1331.
    [17] MANNERING F, BHAT C R, SHANKAR V, et al. Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis[J]. Analytic Methods in Accident Research, 2020, 25: 100113.1-100113.9.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  56
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-03
  • 修回日期:  2024-03-17
  • 网络出版日期:  2025-07-11
  • 刊出日期:  2024-03-26

目录

    /

    返回文章
    返回