• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

土-结构相互作用下输电塔-线耦合系统整体可靠度分析

王磊 王涛 李正良 吕大刚 谭忆秋

王磊, 王涛, 李正良, 吕大刚, 谭忆秋. 土-结构相互作用下输电塔-线耦合系统整体可靠度分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230399
引用本文: 王磊, 王涛, 李正良, 吕大刚, 谭忆秋. 土-结构相互作用下输电塔-线耦合系统整体可靠度分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230399
WANG Lei, WANG Tao, LI Zhengliang, LYU Dagang, TAN Yiqiu. Global Reliability Analysis of Transmission Tower–Line Coupling System Considering Soil-Structure Interaction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230399
Citation: WANG Lei, WANG Tao, LI Zhengliang, LYU Dagang, TAN Yiqiu. Global Reliability Analysis of Transmission Tower–Line Coupling System Considering Soil-Structure Interaction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230399

土-结构相互作用下输电塔-线耦合系统整体可靠度分析

doi: 10.3969/j.issn.0258-2724.20230399
基金项目: 国家自然科学基金项目(52508584);重庆市自然科学基金项目(CSTB2024NSCQ-MSX1134)
详细信息
    作者简介:

    王 磊(1999—),男,博士研究生,研究方向为工程可靠度,E-mail:waNglei@stu.cqu.edu.cn

    通讯作者:

    王 涛(1993—),男,博士,助理研究员,研究方向为结构振动与安全风险评估,E-mail: taowang@alu.cqu.edu.cn

  • 中图分类号: TM753

Global Reliability Analysis of Transmission Tower–Line Coupling System Considering Soil-Structure Interaction

  • 摘要:

    为研究土-结构相互作用和塔线耦合作用对输电塔整体可靠度的影响,建立随机风荷载作用下考虑土-结构相互作用的输电塔-线耦合系统简化力学模型,其中,输电塔、绝缘子、导线和基础4个结构采用多质点力学模型进行模拟,地基土对耦合系统动力响应的影响采用S-R (swing-rocking)模型进行模拟,耦合系统所处随机风场则采用谱表示-降维方法进行模拟;其次,基于耦合系统简化力学模型和概率密度演化方法(PDEM),提出适用于考虑土-结构相互作用的输电塔-线耦合系统整体可靠度分析方法;最后,以某特高压交流输变电线路的直线塔为例,分别计算塔顶位移的概率密度函数、均值和标准差,并以塔顶位移极值为控制变量求解耦合系统的整体可靠度. 分析结果表明:考虑塔线耦合作用后,塔顶位移响应极值的分布函数明显右移,结构失效概率由1.605 × 10−38增加至0.932;考虑土-结构相互作用后,塔顶位移响应极值的分布函数轻微右移,结构失效概率有所增加,与固定端工况相比,中硬土、中软土和软弱土工况下的结构失效概率增幅分别为4.44%、5.22%和11.76%;与蒙特卡洛方法相比,所提方法可高效获得塔顶位移的概率信息,其计算时间仅为蒙特卡洛方法的1/33,而均值与标准差的二范数相对误差在3%以内.

     

  • 图 1  输电塔-线耦合系统简化模型

    Figure 1.  Simplified model of transmission tower–line coupling system

    图 2  考虑土-结构相互作用的输电塔-线耦合系统简化力学模型

    Figure 2.  Simplified mechanical model of transmission tower–line coupling system with soil-structure interaction

    图 3  算例耦合系统信息

    Figure 3.  Information of prototype coupling system

    图 4  耦合系统风场模拟点(单位:m)

    Figure 4.  Wind field simulation points of coupling system (unit: m)

    图 5  塔顶脉动风速样本均值功率谱与目标值

    Figure 5.  Mean power spectral density of tower-top turbulence wind speed samples and target values

    图 6  塔顶脉动风速样本均值和标准差

    Figure 6.  Mean and standard deviation of tower-top turbulence wind speed samples

    图 7  塔顶风速代表性时程

    Figure 7.  Representative wind speed time history of tower-top

    图 8  耦合系统响应结果对比

    Figure 8.  Comparisons of coupling system responses

    图 9  塔顶位移均值与标准差

    Figure 9.  Mean and standard deviation of tower-top displacement

    图 10  塔顶位移的概率密度演化过程

    Figure 10.  Probability density evolution of tower-top displacement

    图 11  不同结构体系下塔顶位移极值的PDF和CDF

    Figure 11.  PDF and CDF of tower-top displacement extremum under different structure systems

    图 12  不同工况下塔顶位移极值的PDF和CDF

    Figure 12.  PDF and CDF of tower-top displacement extremum under different conditions

    表  1  不同地基土参数

    Table  1.   Parameters of different subsoil types

    土体类型 ρ/( kg·m−3 v VS/(m·s−1 G/(×108 N·m−2
    中硬土 2000 0.30 400 3.20
    中软土 1900 0.40 200 0.76
    软弱土 1800 0.49 100 0.18
    下载: 导出CSV

    表  2  不同结构体系的失效概率

    Table  2.   Failure probabilities of different structure systems

    结构体系 失效概率
    单塔 1.1974 × 10−59
    地基-单塔 1.6052 × 10−38
    塔线 0.7589
    地基-塔线 0.9321
    下载: 导出CSV

    表  3  不同工况下耦合系统的失效概率

    Table  3.   Failure probabilities of coupling system under different conditions

    工况 失效概率 变化率/%
    固定端 0.7589
    中硬土 0.7926 4.44
    中软土 0.8340 5.22
    软弱土 0.9320 11.76
    下载: 导出CSV
  • [1] 李正良, 张智航, 王涛. 考虑多重性能水准的特高压双柱悬索拉线塔风灾易损性分析[J]. 中国电机工程学报, 2024, 44(20): 8305-8317.

    LI Zhengliang, ZHANG Zhihang, WANG Tao. Wind fragility analysis of UHV double column suspended guyed tower considering multiple performance levels[J]. Proceedings of the CSEE, 2024, 44(20): 8305-8317.
    [2] 李悦, 谢强, 张欣, 等. 强风作用下输电塔线体系连续性倒塌分析[J]. 西南交通大学学报, 2024, 59(2): 423-430.

    LI Yue, XIE Qiang, ZHANG Xin, et al. Cascading failure analysis of transmission tower–line system under strong wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430.
    [3] SKUODIS Š, DIRGĖLIE NĖ N, TAMOSIU NAS T, et al. Case study of pullout piles connected with cap[J]. IOP Conference Series: Earth and Environmental Science, 2021, 727(1): 012015.
    [4] 汪之松, 刘兴龙, 武彦君, 等. 考虑SSI效应的输电塔-线体系风振响应简化分析[J]. 西南交通大学学报, 2019, 54(2): 319-327.

    WANG Zhisong, LIU Xinglong, WU Yanjun, et al. Simplified analysis of wind-induced response of transmission tower-line system considering SSI effect[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 319-327.
    [5] WANG T, LI Z L, FAN W L, et al. Structural reliability assessment based on enhanced conjugate unscented transformation and improved maximum entropy method[J]. Journal of Structural Engineering, 2021, 147(12): 04021213. doi: 10.1061/(ASCE)ST.1943-541X.0003194
    [6] NATARAJAN K, SANTHAKUMAR A R. Reliability-based optimization of transmission line towers[J]. Computers & Structures, 1995, 55(3): 387-403.
    [7] ZHANG L L, LI J. Probability density evolution analysis on dynamic response and reliability estimation of wind-excited transmission towers[J]. Wind and Structures, 2007, 10(1): 45-60. doi: 10.12989/was.2007.10.1.045
    [8] 汪大海, 李杰. 强风下高压输电塔线系统非线性随机动力响应[J]. 振动与冲击, 2010, 29(6): 62-65, 235.

    WANG Dahai, LI Jie. Nonlinear stochastic response of transmission tower-line system under strong wind[J]. Journal of Vibration and Shock, 2010, 29(6): 62-65, 235.
    [9] 俞登科, 李正良, 李茂华, 等. 基于矩方法的特高压输电塔抗风可靠度分析[J]. 工程力学, 2013, 30(5): 311-316.

    YU Dengke, LI Zhengliang, LI Maohua, et al. Wind-resistant reliability analysis of UHV transmission tower based on moment methods[J]. Engineering Mechanics, 2013, 30(5): 311-316.
    [10] 王成, 王涛, 黄兴, 等. 基于样本矩-最大熵法的长短腿输电塔整体可靠度分析[J]. 西南交通大学学报, 2025, 60(5): 1315-1324.

    WANG Cheng, WANG Tao, HUANG Xing, et al. Overall reliability analysis of transmission towers with asymmetrical legs based on sample moment and maximum entropy method[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1315-1324.
    [11] TANG Z Q, LI Z L, WANG T, et al. PDEM-based multi-component and global reliability evaluation framework for steel tubular transmission towers with semi-rigid connections[J]. Engineering Structures, 2023, 295: 116838. doi: 10.1016/j.engstruct.2023.116838
    [12] TANG Z Q, WANG T, LI Z L, et al. Stochastic stress response and dynamic reliability evaluation for transmission towers with semi-rigid behaviors[J]. Disaster Prevention and Resilience, 2023, 2(4): 22-30.
    [13] WANG L, WANG T, LI Z L, et al. Stochastic seismic dynamic response analysis for coupled transmission tower-insulator-line systems considering soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2024, 181: 108662. doi: 10.1016/j.soildyn.2024.108662
    [14] 王磊, 李正良, 王涛. 考虑SSI效应的输电塔-线耦合系统抗震可靠度分析[J]. 湖南大学学报(自然科学版), 2023, 50(11): 192-203.

    WANG Lei, LI Zhengliang, WANG Tao. Seismic reliability analysis of transmission tower-line coupling system considering SSI effect[J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 192-203.
    [15] 田利, 李兴建, 易思银, 等. 地震下考虑桩-土-结构相互作用的输电塔-线体系响应分析[J]. 世界地震工程, 2018, 34(3): 1-11.

    TIAN Li, LI Xingjian, YI Siyin, et al. Response analysis of transmission tower-line system considering pile-soil-structure interaction under earthquake loading[J]. World Earthquake Engineering, 2018, 34(3): 1-11.
    [16] 李宏男, 石文龙, 贾连光. 考虑导线影响的输电塔侧向简化抗震计算方法[J]. 振动工程学报, 2003, 16(2): 233-237.

    LI Hongnan, SHI Wenlong, JIA Lianguang. Simplified aseicmic calculation method considering effects of lines on transmission tower[J]. Journal of Vibration Engineering, 2003, 16(2): 233-237.
    [17] 刘章军, 刘增辉. 随机脉动风场的谱表示降维模拟[J]. 振动工程学报, 2018, 31(1): 49-56.

    LIU Zhangjun, LIU Zenghui. Dimension reduction based spectral representation of stochastic fluctuation wind field simulation[J]. Journal of Vibration Engineering, 2018, 31(1): 49-56.
    [18] 瓦尔夫. 土-结构动力相互作用[M]. 吴世明, 唐有职, 陈龙珠, 等译. 北京: 地震出版社, 1989.
    [19] NOVAK M, EL HIF NAWY L. Structural response to wind with soil-structure interaction[J]. Advances in Wind Engineering, 1988, 28(1-3): 329-338.
    [20] LI J, CHEN J B. Stochastic dy Namics of structures[M]. Clementi: John Wiley & Sons, 2009.
    [21] CHE N J B, YA NG J Y, LI J. A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters[J]. Structural Safety, 2016, 59: 20-31. doi: 10.1016/j.strusafe.2015.11.001
    [22] WANG T, Dong Y, WANG L, et al. Global reliability assessment of coupled transmission tower-insulator-line systems considering soil-structure interaction subjected to multi-hazard of wind and ice[J]. Journal of Constructional Steel Research, 2024, 223: 109004. doi: 10.1016/j.jcsr.2024.109004
    [23] KAIMAL J C, WY NGAARD J C J, IZUMI Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
    [24] PICCARDO G, SOLARI G. Generalized equivalent spectrum technique[J]. Wind and Structures, 1998, 1(2): 161-174. doi: 10.12989/was.1998.1.2.161
    [25] 中华人民共和国住房和城乡建设部. 110 kV~750 kV架空输电线路设计规范( GB 50545—2010)[S]. 北京: 中国计划出版社, 2010.
    [26] WANG T, WANG Z Y, LU D G, et al. Galloping-induced global reliability assessment for ice-covered three-phase bundled conductors considering both mechanical and electrical functional failure modes[J]. Reliability Engineering & System Safety, 2025, 262: 111240.
    [27] 鄢秀庆, 何松洋, 李正良, 等. 输电塔斜材不同节点型式下的受压承载力[J]. 西南交通大学学报, 2024, 59(3): 712-719.

    YAN Xiuqing, HE Songyang, LI Zhengliang, et al. Compression bearing capacity of inclined members of transmission tower with different joint types[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 712-719.
    [28] SONG P, WANG T, LU D. Structural global reliability assessment considering nonlinear correlation effects by enhanced high-order moment method[J]. Acta Mechanica Sinica, 2023, 39(4): 722356. doi: 10.1007/s10409-022-22356-x
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  39
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2024-06-19
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回