Modeling and Operational Characteristic Analysis of High-Voltage Dedicated Line Continuous Power Supply System
-
摘要:
高压专线贯通供电系统是一种实现长距离、无分相的新型牵引供电方案. 为准确掌握该系统的运行特性,在考虑高压输电线路并联电容和车网耦合关系的基础上,采用二端口网络理论对贯通高压输电网进行简化;同时,通过恒功率负载模拟列车负荷,构建高压专线贯通供电系统的潮流等效模型;基于该模型,采用前推回代法实现列车动态潮流计算,并理论分析牵引网电流分配、系统等效阻抗的变化规律及其影响因素;最后,仿真分析在不同工况下牵引网电压分布、牵引变电所功率分配以及空载环流的传输特性. 研究结果表明:在轻载运行时,贯通高压输电网采用电缆的方案会导致线路末端电压显著提高;再生列车有助于改善网压水平,并能高效利用再生能量;线路空载时,通过保持各牵引变压器的实际变比一致以及减少贯通高压输电网的长度,可以有效降低空载环流.
Abstract:The high-voltage dedicated line continuous power supply system (HDLCPSS) is a novel traction power supply scheme that enables long-distance and phase separation-free operation. To accurately grasp the operational characteristics of this system, the continuous high-voltage transmission network was simplified using the two-port network theory by considering the parallel capacitance of high-voltage transmission lines and the coupling relationship between the train and the catenary. A constant power load was used to simulate the train load, and a power flow equivalent model of the HDLCPSS was constructed. Based on this model, the forward-backward substitution method was used for dynamic power flow calculation of trains. The variation patterns of traction network current distribution, system’s equivalent impedance, and their influencing factors were theoretically analyzed. Finally, a simulation analysis was conducted on the voltage distribution of the traction network, the power distribution of traction substations under different operating conditions, and the transmission characteristics of no-load circulating current. The results show that during light-load operation, using the cable approach for the continuous high-voltage transmission network leads to a significant increase in the terminal voltage of the line. Trains with regenerative braking contribute to the improvement of catenary voltage levels and the efficient utilization of regenerative energy. Under no-load conditions, keeping the actual transformation ratio of each traction transformer consistent and reducing the length of the continuous high-voltage transmission network effectively reduce the no-load circulating current.
-
表 1 系统参数设置
Table 1. Parameter settings of system
装置 电气参数 取值 三相电力系统 系统短路容
量/(MV·A)4000 额定电压/kV 220 电力电缆YJLW02-127/220-400 自阻抗/(Ω·km−1) 0.1106 + j0.7232 互阻抗/(Ω·km−1) 0.0493 + j0.4952 对地电容/(F·km−1) 1.2926 ×10−7220 kV/27.5 kV
单相牵引变压器额定容量/(MV·A) 40 短路阻抗/% 10.5 短路损耗/kW 130 等效牵引网 等效阻抗/(Ω·km−1) 0.0938 + j0.3345 表 2 牵引变电所各端口电压计算对比
Table 2. Comparison of voltage calculations at each port of traction substation
kV 电压 UTT1 UTT2 UTT3 Utt1 Utt2 Utt3 理论 226.338 228.811 229.568 28.33 28.45 28.54 仿真 226.338 228.796 229.547 28.33 28.45 28.55 误差/% 0 0.006 0.009 0 0 0.030 -
[1] 李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007: 129-138. [2] 韩正庆, 陈晨旭, 沈睿, 等. 高速铁路电分相电弧运动发展规律研究[J]. 中国电机工程学报, 2020, 40(10): 3154-3163.HAN Zhengqing, CHEN Chenxu, SHEN Rui, et al. Research on the development laws of articulated phase insulator arc movement in high-speed railway[J]. Proceedings of the CSEE, 2020, 40(10): 3154-3163. [3] WANG S, ZHANG L Y, YU G H, et al. Hybrid phase-controlled circuit breaker with switch system used in the railway auto-passing neutral section with an electric load[J]. CSEE Journal of Power and Energy Systems, 2019, 5(4): 545-552. [4] 解绍锋, 李群湛. 高速列车再生制动对负序影响研究[J]. 铁道学报, 2011, 33(7): 14-18. doi: 10.3969/j.issn.1001-8360.2011.07.003XIE Shaofeng, LI Qunzhan. Study on impact of high-speed train regenerative braking on negative sequence[J]. Journal of the China Railway Society, 2011, 33(7): 14-18. doi: 10.3969/j.issn.1001-8360.2011.07.003 [5] MIAO R, WU C X, ZHU K, et al. Integrated optimisation model for neutral section location planning and energy-efficient train control in electrified railways[J]. IET Renewable Power Generation, 2020, 14(18): 3599-3607. doi: 10.1049/iet-rpg.2020.0142 [6] 王鑫, 涂春鸣, 郭祺, 等. 电气化铁路贯通型供电系统综述[J]. 机车电传动, 2022(3): 17-28.WANG Xin, TU Chunming, GUO Qi, et al. Review of through-type power supply system for electrified railways[J]. Electric Drive for Locomotives, 2022(3): 17-28. [7] ZHANG L Y, LIANG S W, LI X. Research on the harmonic in new continuous cable traction power supply system and its transmission characteristic[J]. IET Generation, Transmission & Distribution, 2020, 14(14): 2710-2718. [8] 李群湛, 王辉, 黄文勋, 等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报, 2021, 36(5): 1064-1074.LI Qunzhan, WANG Hui, HUANG Wenxun, et al. Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074. [9] 李群湛, 李晋, 解绍锋, 等. 一种电气化铁路同相供变电系统: CN109217330B[P]. 2023-10-27. [10] 张恒, 王辉, 李群湛, 等. 采用自耦变压器供电的重载铁路牵引电缆贯通供电系统供电方案[J]. 电力自动化设备, 2021, 41(1): 204-213.ZHANG Heng, WANG Hui, LI Qunzhan, et al. Power supply scheme of traction cable co-phase connected power supply system for heavy-haul railway powered by AT[J]. Electric Power Automation Equipment, 2021, 41(1): 204-213. [11] 周婷, 解绍锋. 电气化铁路新型电缆供电方案[J]. 电力自动化设备, 2018, 38(7): 189-195, 206.ZHOU Ting, XIE Shaofeng. New-type cable traction power supply scheme of electric railroad[J]. Electric Power Automation Equipment, 2018, 38(7): 189-195, 206. [12] ZHANG L Y, LIANG S W, LI X, et al. Modelling on novel cable traction power supply system and power distribution analysis[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 745-754. doi: 10.1109/TPWRD.2021.3069980 [13] 张丽艳, 罗博, 郑兴. 新型电缆贯通供电系统短路特性分析[J]. 西南交通大学学报, 2025, 60(1): 147-155. doi: 10.3969/j.issn.0258-2724.20220290ZHANG Liyan, LUO Bo, ZHENG Xing. Short-circuit characteristics analysis of new continuous cable traction power supply system[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 147-155. doi: 10.3969/j.issn.0258-2724.20220290 [14] 邱关源. 电路-下册[M]. 3版. 北京: 高等教育出版社, 1989: 185-198. [15] HE X Q, REN H J, LIN J Y, et al. Power flow analysis of the advanced co-phase traction power supply system[J]. Energies, 2019, 12(4): 12040754.1-12040754.20. [16] 韩祯祥. 电力系统分析[M]. 第3版. 杭州: 浙江大学出版社, 2005: 114-125. [17] 刘炜, 杨凌云, 马庆安, 等. 双制式列车接地系统的车-地联合牵引供电计算[J]. 西南交通大学学报, 2024, 59(3): 501-509. doi: 10.3969/j.issn.0258-2724.20220655LIU Wei, YANG Lingyun, MA Qing’an, et al. Vehicle-ground united traction power supply calculation in dual-system train grounding system[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 501-509. doi: 10.3969/j.issn.0258-2724.20220655 [18] 刘炜, 曾佳欣, 马庆安, 等. 含双向变流装置的城轨牵引供电系统协同供电潮流计算[J]. 西南交通大学学报, 2023, 58(5): 1145-1153. doi: 10.3969/j.issn.0258-2724.20220494LIU Wei, ZENG Jiaxin, MA Qing’an, et al. Calculation of collaborative power flow for urban rail traction power supply system with bidirectional converter device[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1145-1153. doi: 10.3969/j.issn.0258-2724.20220494 [19] 靳守杰, 管美玲, 李鲲鹏. 市域铁路双边供电系统的稳态潮流[J]. 西南交通大学学报, 2023, 58(6): 1231-1239, 1302. doi: 10.3969/j.issn.0258-2724.20211044JIN Shoujie, GUAN Meiling, LI Kunpeng. Steady-state power flow in bilateral power supply system for suburban railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1231-1239, 1302. doi: 10.3969/j.issn.0258-2724.20211044 [20] 范文礼, 叶雨润, 李全优, 等. 基于潮流相关性网络的电网脆弱线路识别[J]. 西南交通大学学报, 2024, 59(5): 1006-1013. doi: 10.3969/j.issn.0258-2724.20210535FAN Wenli, YE Yurun, LI Quanyou, et al. Identification of vulnerable lines in power grid based on power flow correlation network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1006-1013. doi: 10.3969/j.issn.0258-2724.20210535 [21] 任家兴. 含储能装置的城轨交通能馈系统再生制动能量回收利用研究[D]. 北京: 北京交通大学, 2024. [22] 刘一霖, 黄毓锴. 双流制牵引供电系统再生制动能量利用的能量传输装置[J]. 电工技术, 2023(24): 142-148, 152.LIU Yilin, HUANG Yukai. Energy transfer device for utilizing regenerative braking energy in dual-flow traction power supply system[J]. Electric Engineering, 2023(24): 142-148, 152. [23] 张丽艳, 郑兴, 罗博, 等. 考虑接触网-钢轨耦合关系及再生制动能量的新型电缆贯通供电系统电气特性[J]. 中国铁道科学, 2023, 44(3): 164-177.ZHANG Liyan, ZHENG Xing, LUO Bo, et al. Electrical characteristics of new continuous cable power supply system considering catenary-rail coupling relationship and regenerative braking energy[J]. China Railway Science, 2023, 44(3): 164-177. [24] 胡海涛, 杨凯, 葛银波, 等. 电气化铁路分区所再生制动能量利用系统及其控制策略[J]. 中国电机工程学报, 2024, 44(11): 4286-4298.HU Haitao, YANG Kai, GE Yinbo, et al. Regenerative braking energy utilization system and control strategy for sectioning post in electrified railway[J]. Proceedings of the CSEE, 2024, 44(11): 4286-4298. [25] 卢景涛. 高速铁路长大坡道再生制动能量储存回收优化配置研究[D]. 兰州: 兰州交通大学, 2023. -
下载: