• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种电磁式高静-低动刚度隔振系统建模与特性分析

张明 李洪涛 崔浩东 孙凤 徐方超 张磊

张明, 李洪涛, 崔浩东, 孙凤, 徐方超, 张磊. 一种电磁式高静-低动刚度隔振系统建模与特性分析[J]. 西南交通大学学报, 2024, 59(4): 858-866. doi: 10.3969/j.issn.0258-2724.20230365
引用本文: 张明, 李洪涛, 崔浩东, 孙凤, 徐方超, 张磊. 一种电磁式高静-低动刚度隔振系统建模与特性分析[J]. 西南交通大学学报, 2024, 59(4): 858-866. doi: 10.3969/j.issn.0258-2724.20230365
ZHANG Ming, LI Hongtao, CUI Haodong, SUN Feng, XU Fangchao, ZHANG Lei. Modeling and Characteristic Analysis of an Electromagnetic Isolation System with High Static Stiffness and Low Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 858-866. doi: 10.3969/j.issn.0258-2724.20230365
Citation: ZHANG Ming, LI Hongtao, CUI Haodong, SUN Feng, XU Fangchao, ZHANG Lei. Modeling and Characteristic Analysis of an Electromagnetic Isolation System with High Static Stiffness and Low Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 858-866. doi: 10.3969/j.issn.0258-2724.20230365

一种电磁式高静-低动刚度隔振系统建模与特性分析

doi: 10.3969/j.issn.0258-2724.20230365
基金项目: 国家自然科学基金(52005344,52005345);辽宁省科技厅面上项目(2022-MS-271);辽宁省教育厅青年项目(LJKQZ2021044);国家重点研发计划(2020YFC2006701);辽宁省教育厅科学技术研究青年项目(202007141)
详细信息
    作者简介:

    张明(1988—),男,副教授,博士,研究方向为磁力减震与柔性机器人技术,E-mail:mingzhang@sut.edu.cn

  • 中图分类号: TH135;TB535.1

Modeling and Characteristic Analysis of an Electromagnetic Isolation System with High Static Stiffness and Low Dynamic Stiffness

  • 摘要:

    为改善传统线性隔振系统尺寸参数确定后就无法取得更低起始隔振频率的缺陷,基于电磁线圈嵌套永磁体结构,提出一种具有高静-低动刚度特性的电磁式可变刚度隔振系统. 采用分子电流法建立隔振系统磁力的数学模型;充分考虑隔振系统力学模型中二次与三次非线性刚度项的影响,建立单自由度被动隔振系统强非线性动力学模型;采用增量谐波平衡法(IHB)求解动力学模型,分析激励、电流等对隔振系统位移传递率的影响规律;构建实验测试系统,验证所提出新型隔振系统的有效性. 实验结果和理论计算表明:通入电流比未通入电流时隔振系统的起始隔振频率降低了19.25%,拓宽了隔振频带,实现了其对不同振源的适应性.

     

  • 图 1  高静-低动刚度隔振系统

    Figure 1.  Vibration isolation system with high static stiffness and low dynamic stiffness

    图 2  隔振系统轴向力示意

    Figure 2.  Axial force of vibration isolation system

    图 3  系统工作原理

    Figure 3.  System working principle

    图 4  A对系统刚度的影响

    Figure 4.  Effect of A on system stiffness

    图 5  B 比对系统刚度的影响

    Figure 5.  Effect of B on system stiffness

    图 6  X对系统刚度的影响

    Figure 6.  Effect of X on system stiffness

    图 7  1组磁环的分子电流模型

    Figure 7.  Molecular current model of magnetic rings

    图 8  磁环与多层载流线圈的分子电流模型

    Figure 8.  Molecular current model of a magnetic ring and current-carrying coil with multiple layers

    图 9  对比结果

    Figure 9.  Comparative results

    图 10  动力学模型

    Figure 10.  Dynamic model

    图 11  相平面图

    Figure 11.  Phase plane

    图 12  质量与基座在13.5 Hz下的加速度图像

    Figure 12.  Acceleration image of mass and base at 13.5 Hz

    图 13  不同电流下的位移传递率

    Figure 13.  Simulated displacement transmissibility with different currents

    图 14  试验系统示意图.

    Figure 14.  Test setup

    图 15  不同电流下的位移传递率实验结果.

    Figure 15.  Experimental results of displacement transmissibility with different currents

    表  1  结构参数

    Table  1.   Structural parameters mm

    参数 数值
    磁环内径 5
    磁环外径 12
    磁环厚度 8(上、中),12(下)
    线圈内径 15
    线圈外径 30
    线圈厚度 16
    工作气隙 Z 15
    线径 s 1
    下载: 导出CSV
  • [1] 翟明达,张博,李晓龙,等. 基于模糊PID控制的准零刚度磁悬浮隔振平台的设计与实现[J]. 西南交通大学学报,2023,58(4): 886-895.

    ZHAI Mingda, ZHANG Bo, LI Xiaolong, et al. Design and implementation of magnetic suspension vibration isolation platform with quasi-zero stiffness based on fuzzy PID control[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 886-895.
    [2] 韩俊淑,孙景工,孟令帅. 一种曲面-弹簧-滚子机构的非线性隔振器特性分析[J]. 振动与冲击,2019,38(3): 170-178.

    HAN Junshu, SUN Jinggong, MENG Lingshuai. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element[J]. Journal of Vibration and Shock, 2019, 38(3): 170-178.
    [3] SUN Y, ZHAO J L, WANG M, et al. High-static–low-dynamic stiffness isolator with tunable electromagnetic mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1): 316-326. doi: 10.1109/TMECH.2019.2954910
    [4] CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4/5): 707-717.
    [5] CARRELLA A, BRENNAN M J, WATERS T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static—low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29. doi: 10.1016/j.ijmecsci.2011.11.012
    [6] 周加喜,王心龙,徐道临,等. 含凸轮-滚轮机构的准零刚度系统隔振特性实验研究[J]. 振动工程学报,2015,28(3): 449-455.

    ZHOU Jiaxi, WANG Xinlong, XU Daolin, et al. Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism[J]. Journal of Vibration Engineering, 2015, 28(3): 449-455.
    [7] 刘兴天,张志谊,华宏星. 新型低频隔振器的特性研究[J]. 振动与冲击,2012,31(5): 161-164.

    LIU Xingtian, ZHANG Zhiyi, HUA Hongxing. Characteristics of a novel low-frequency isolator[J]. Journal of Vibration and Shock, 2012, 31(5): 161-164.
    [8] 陆文昌,杨帆,汪少华,等. 气动可调阻尼同轴一体式减振支柱阻尼特性研究[J]. 振动与冲击,2015,34(20): 115-119,128.

    LU Wenchang, YANG Fan, WANG Shaohua, et al. Damping characteristics of a coaxial integrated strut with adjustable pneumatic damping[J]. Journal of Vibration and Shock, 2015, 34(20): 115-119,128.
    [9] ZHANG F, SHAO S B, TIAN Z, et al. Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stress[J]. Mechanical Systems and Signal Processing, 2019, 123: 244-263. doi: 10.1016/j.ymssp.2019.01.022
    [10] 高双,朱翔,谌宗琦,等. 基于欧拉梁的准零刚度隔振系统动力特性分析[J]. 中国机械工程,2016,27(21): 2869-2876.

    GAO Shuang, ZHU Xiang, CHEN Zongqi, et al. Analyses on dynamics characteristics of a quasi-zero-stiffness vibration isolation system based on Euler beam[J]. China Mechanical Engineering, 2016, 27(21): 2869-2876.
    [11] 李爽,楼京俊,杨庆超,等. 双环永磁体型高静低动刚度隔振器设计、建模与试验研究[J]. 振动工程学报,2019,32(4): 675-684.

    LI Shuang, LOU Jingjun, YANG Qingchao, et al. Design and experiment of a vibration isolator using double-ring permanent magnets springs with negative stiffness[J]. Journal of Vibration Engineering, 2019, 32(4): 675-684.
    [12] ZHOU N, LIU K. A tunable high-static–low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273. doi: 10.1016/j.jsv.2009.11.001
    [13] ZHOU N B, LIU K F. Characterization of an electromagnetic vibration isolator[J]. Journal of Electromagnetic Analysis and Applications, 2011, 3(12): 519-528.
    [14] 陈树辉. 强非线性振动系统的定量分析方法[M]. 北京:科学出版社,2007:167-180.
    [15] 王洪昌,蒋书运,梁玉飞. 基于分子电流法轴向永磁轴承轴向刚度的分析[J]. 机械工程学报,2009,45(5): 102-107. doi: 10.3901/JME.2009.05.102

    WANG Hongchang, JIANG Shuyun, LIANG Yufei. Analysis of axial stiffness of permanent magnet bearings by using the equivalent surface currents method[J]. Journal of Mechanical Engineering, 2009, 45(5): 102-107. doi: 10.3901/JME.2009.05.102
    [16] 张海波,邱玉江,蒋书运. 永磁轴承承载能力分子电流模型的积分定义求解方法[J]. 机械工程学报,2016,52(7): 54-59. doi: 10.3901/JME.2016.07.054

    ZHANG Haibo, QIU Yujiang, JIANG Shuyun. Analysis of the equivalent surface current model for the permanent magnet bearing by using the integral definition[J]. Journal of Mechanical Engineering, 2016, 52(7): 54-59. doi: 10.3901/JME.2016.07.054
    [17] LAU S L, ZHANG W S. Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method[J]. Journal of Applied Mechanics, 1992, 59(1): 153-160. doi: 10.1115/1.2899421
    [18] ZHOU J X, ZHANG L. Incremental harmonic balance method for predicting amplitudes of a multi-d. o. f. non-linear wheel shimmy system with combined Coulomb and quadratic damping[J]. Journal of Sound and Vibration, 2005, 279(1/2): 403-416.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  75
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-11-15
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回