• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正

徐希堃 洪彧 许靖业 周志达 蒲黔辉 文旭光

徐希堃, 洪彧, 许靖业, 周志达, 蒲黔辉, 文旭光. 基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230358
引用本文: 徐希堃, 洪彧, 许靖业, 周志达, 蒲黔辉, 文旭光. 基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230358
XU Xikun, HONG Yu, XU Jingye, ZHOU Zhida, PU Qianhui, WEN Xuguang. Finite Element Model Updating for Bridges Based on Adaptive Nested Sampling and Bayesian Theory[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230358
Citation: XU Xikun, HONG Yu, XU Jingye, ZHOU Zhida, PU Qianhui, WEN Xuguang. Finite Element Model Updating for Bridges Based on Adaptive Nested Sampling and Bayesian Theory[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230358

基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正

doi: 10.3969/j.issn.0258-2724.20230358
基金项目: 广西科技计划(AA21077011);中央高校基本科研业务费(2682022CX003)
详细信息
    作者简介:

    徐希堃(1993—),男,博士研究生,研究方向为桥梁智能检测与安全评定,E-mail:xuxikun@my.swjtu.edu.cn

    通讯作者:

    洪彧(1989—),女,副教授,博士,研究方向为桥梁健康监测和结构动力学,E-mail:hongyu@swjtu.edu.cn

  • 中图分类号: U441

Finite Element Model Updating for Bridges Based on Adaptive Nested Sampling and Bayesian Theory

  • 摘要:

    在基于有限元模型的桥梁健康监测中,贝叶斯模型修正技术通常被用于量化有限元模型中重要参数的不确定性,以解决模型修正中由于测量误差、建模误差、计算误差等造成的非唯一解问题. 为解决由于大量调用有限元模拟运算,导致修正效率低下的问题,基于自适应嵌套抽样(ANS)算法,提出一种贝叶斯模型修正方法. 该方法利用模态参数构建概率目标函数,并采用 ANS 算法对其进行逼近,ANS 保留了嵌套抽样(NS)的性质,通过逐层缩小抽样范围,使得样本最终逼近最优参数;通过逐层近似,将高维积分问题转化为简单的一维积分问题,简化了证据值和后验概率密度值的计算过程;在此基础上,ANS 算法在迭代过程中通过自适应地调整样本数量,减少对有限元模型的调用;最后,对一座人行桁架桥进行了贝叶斯有限元模型修正试验. 结果表明:在相同算法参数设置下,ANS 算法相比传统 NS 算法降低了约 84% 的有限元模拟调用次数,节省了约 86% 计算时间,并能获得同等精度的不确定性修正结果.

     

  • 图 1  嵌套抽样原理示意

    Figure 1.  Schematic diagram of the nested sampling

    图 2  超立方收缩法原理示意

    Figure 2.  Schematic diagram of hypercube shrinkage method

    图 3  自适应嵌套抽样方法计算流程

    Figure 3.  Calculation flow diagram of adaptive nested sampling method (ANS)

    图 4  人行桥

    Figure 4.  Steel truss footbridge

    图 5  修正参数各分量的收敛过程

    Figure 5.  Convergence processes of each component of the updating parameters

    图 6  修正参数各分量的收敛过程

    Figure 6.  Convergence processes of each component of the updating parameters

    图 7  修正参数范围收缩率

    Figure 7.  Range shrinkage rate of the updating parameters

    表  1  模态参数识别结果

    Table  1.   Modal parameter identification results

    序号 模态阶数 频率 振型 方向
    1 测试结果 4.140 Hz 横向弯曲
    初始ANSYS模型
    模拟结果
    4.484 Hz
    2 测试结果 4.620 Hz 竖向弯曲
    初始ANSYS模型
    模拟结果
    4.552 Hz
    3 测试结果 6.895 Hz 横向剪切
    初始ANSYS模型
    模拟结果
    7.093 Hz
    4 测试结果 8.598 Hz 纵向扭转
    初始ANSYS模型
    模拟结果
    9.307 Hz
    5 测试结果 10.448 Hz 竖向弯曲
    初始ANSYS模型
    模拟结果
    10.709 Hz
    下载: 导出CSV

    表  2  修正参数初始值及取值范围

    Table  2.   Initial values and range of the updating parameters

    参数单位初始值下限上限
    数值θ数值θ数值θ
    E1Pa2.00 × 10111.001.80 × 10110.902.30 × 10111.15
    E2Pa2.00 × 10111.001.80 × 10110.902.30 × 10111.15
    E3Pa2.00 × 10101.001.75 × 10100.8753.25 × 10101.625
    ky1N/m1.50 × 1071.004.95 × 1060.332.00 × 1071.33
    kz1N/m1.00 × 1081.005.00 × 1070.501.50 × 1081.50
    ky2N/m1.50 × 1071.004.95 × 1060.332.00 × 1071.33
    kz2N/m1.00 × 1081.005.00 × 1070.501.50 × 1081.50
    ρ2kg/m32.48 × 1031.002.26 × 1030.912.68 × 1031.08
    下载: 导出CSV

    表  3  ANS修正结果

    Table  3.   Updated results of the ANS method

    参数最大后验概率参数90% 置信下限90% 置信上限
    数值θ变化率/%数值θ数值θ
    E1/Pa2.19 × 10111.10 + 102.04 × 10111.022.26 × 10111.13
    E2/Pa1.82 × 10110.91−91.81 × 10110.911.89 × 10110.95
    E3/Pa3.06 × 10101.53 + 531.94 × 10100.973.21 × 10101.60
    ky1/(N·m−10.84 × 1070.56−440.79 × 1070.521.00 × 1070.67
    kz1/(N·m−10.61 × 1080.61−390.51 × 1080.511.04 × 1081.04
    ky2/(N·m−11.32 × 1070.88−121.17 × 1070.781.44 × 1070.96
    kz2/(N·m−11.02 × 1081.02 + 20.59 × 1080.591.36 × 1081.36
    ρ2/(kg·m−32.46 × 1030.99−12.38 × 1030.962.56 × 1031.03
    下载: 导出CSV

    表  4  NS修正结果

    Table  4.   Updated results of the NS method

    参数最大后验概率参数90% 置信下限90% 置信上限
    数值θ变化率/%数值θ数值θ
    E1/Pa2.14 × 10111.07 + 72.06 × 10111.032.14 × 10111.14
    E2/Pa1.82 × 10110.91−91.82 × 10110.911.97 × 10110.99
    E3/Pa3.20 × 10101.60 + 602.19 × 10101.103.20 × 10101.61
    ky1/(N·m−10.83 × 1070.55−450.81 × 1070.540.97 × 1070.65
    kz1/(N·m−10.62 × 1080.62−380.53 × 1080.531.03 × 1081.03
    ky2/(N·m−11.32 × 1070.88−121.22 × 1070.811.53 × 1071.02
    kz2/(N·m−11.06 × 1081.06 + 60.61 × 1080.611.38 × 1081.38
    ρ2/(kg·m−32.42 × 1030.98−22.38 × 1030.962.60 × 1031.05
    下载: 导出CSV

    表  5  修正后模态频率对比

    Table  5.   Comparison of the updated modal frequencies

    模态频率/Hz 测试值/Hz 初始值/Hz 初始误差/% NS修正值/Hz NS误差/% ANS修正值/Hz ANS误差/%
    1 4.14 4.484 8.30 4.162 0.53 4.159 0.47
    2 4.62 4.552 −1.47 4.627 0.15 4.617 −0.06
    3 6.895 7.093 2.87 6.93 0.51 6.938 0.63
    4 8.598 9.307 8.24 8.58 −0.21 8.552 −0.54
    5 10.448 10.709 2.50 10.492 0.42 10.463 0.15
      注:相对误差=(x-测试值)/测试值
    下载: 导出CSV
  • [1] MEI Z, WU B, BURSI O S, et al. Hybrid simulation with online model updating: application to a reinforced concrete bridge endowed with tall piers[J]. Mechanical Systems and Signal Processing, 2019, 123: 533-553. doi: 10.1016/j.ymssp.2019.01.009
    [2] CHEN Z, SUN H. Sparse representation for damage identification of structural systems[J]. Structural Health Monitoring, 2020, 20(4): 1644-1656.
    [3] MO J, WANG L, GU K X. A two-step interval structural damage identification approach based on model updating and set-membership technique[J]. Measurement, 2021, 182: 109464.1-109464.19.
    [4] PU Q H, HONG Y, CHEN L J, et al. Model updating–based damage detection of a concrete beam utilizing experimental damped frequency response functions[J]. Advances in Structural Engineering, 2019, 22(4): 935-947. doi: 10.1177/1369433218789556
    [5] ZENG J C, KIM Y H. Identification of structural stiffness and mass using bayesian model updating approach with known added mass: numerical investigation[J]. International Journal of Structural Stability and Dynamics, 2020, 20(11): 2050123.1-2050123.31.
    [6] ASTROZA R, ALESSANDRI A, CONTE J P. A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty[J]. Mechanical Systems and Signal Processing, 2019, 115: 782-800. doi: 10.1016/j.ymssp.2018.06.014
    [7] 万华平,任伟新,黄天立. 基于贝叶斯推理的随机模型修正方法[J]. 中国公路学报,2016,29(4): 67-76,95. doi: 10.3969/j.issn.1001-7372.2016.04.009

    WAN Huaping, REN Weixin, HUANG Tianli. Stochastic model updating approach by using Bayesian inference[J]. China Journal of Highway and Transport, 2016, 29(4): 67-76,95. doi: 10.3969/j.issn.1001-7372.2016.04.009
    [8] JOUBERT D J, MARWALA T. Monte Carlo dynamically weighted importance sampling for finite element model updating[M]//Conference Proceedings of the Society for Experimental Mechanics Series. Cham:Springer International Publishing, 2016: 303-312.
    [9] 彭珍瑞,郑捷,白钰,等. 一种基于改进MCMC算法的模型修正方法[J]. 振动与冲击,2020,39(4): 236-245.

    PENG Zhenrui, ZHENG Jie, BAI Yu, et al. A model updating method based on an improved MCMC algorithm[J]. Journal of Vibration and Shock, 2020, 39(4): 236-245.
    [10] 秦世强,廖思鹏,黄春雷,等. 基于自适应Kriging模型的人行斜拉桥有限元模型修正[J]. 中山大学学报(自然科学版)(中英文),2021,60(6): 43-53.

    QIN SHIQIANG, LIAO SIPENG, HUANG CHUNLEI, et al. Adaptive Kriging model based finite element model updating of a cable-stayed pedestrian bridge[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(6): 43-53.
    [11] 王其昂;王腾;倪一清. 基于卷积神经网络的高铁车轮损伤识别方法研究[J]. 中国矿业大学学报,2020,49(4): 781-787.

    WANG Qi’ang, WANG Teng, NI Yiqing, Damage detection of wheels for high-speed rail based on convolutional neural network[J]. Journal of China University of Mining & Technology, 2020, 49(4): 781-787.
    [12] SKILLING, J. Nested sampling for general Bayesian computation [J]. Bayesian Analysis, 2006, 1:833-859.
    [13] HANDLEY W J, HOBSON M P, LASENBY A N. Polychord: next-generation nested sampling[J]. Monthly Notices of the Royal Astronomical Society, 2015, 453(4): 4384-4398.
    [14] CAO T T, ZENG X K, WU J C, et al. Integrating MT-DREAMzs and nested sampling algorithms to estimate marginal likelihood and comparison with several other methods[J]. Journal of Hydrology, 2018, 563: 750-765. doi: 10.1016/j.jhydrol.2018.06.055
    [15] HIGSON E, HANDLEY W J, HOBSON M P, et al. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation[J]. Statistics and Computing, 2019, 29(5): 891-913. doi: 10.1007/s11222-018-9844-0
    [16] TRASSINELLI M, CICCODICOLA P. Mean shift cluster recognition method implementation in the nested sampling algorithm[J]. Entropy, 2020, 22(2): 185. doi: 10.3390/e22020185
    [17] QIAN F, ZHENG W. An evolutionary nested sampling algorithm for Bayesian model updating and model selection using modal measurement[J]. Engineering Structures, 2017, 140: 298-307. doi: 10.1016/j.engstruct.2017.02.048
    [18] XU X K, HONG Y, CHEN L J, et al. Hybrid nested sampling method for identifying the uncertainty of the high-dimensional updating parameters in Bayesian structural model updating[J]. Advances in Structural Engineering, 2022, 25(8): 1730-1744. doi: 10.1177/13694332211069511
    [19] 王坤阳,公茂盛,左占宣. 基于贝叶斯理论嵌套抽样的结构物理参数识别研究[J]. 振动与冲击,2022,41(7): 74-80.

    WANG Kunyang, GONG Maosheng, ZUO Zhanxuan. Structural physical parameter identification based on Bayesian theory and nested sampling[J]. Journal of Vibration and Shock, 2022, 41(7): 74-80.
    [20] 杨朋超,薛松涛,谢丽宇. 消能减震建筑结构的贝叶斯有限元模型修正[J]. 土木工程学报,2021(S01): 13-19,47.

    YANG Pengchao, XUE Songtao, XIE Liyu. Bayesian finite-element model updating of passively controlled building structures[J]. China Civil Engineering Journal, 2021(S01): 13-19,47.
    [21] NEAL R M. Slice sampling[J]. The Annals of Statistics, 2003, 31(3): 705-767.
    [22] DONG X J, WANG Y. A comparative study of frequency - domain finite element updating approaches using different optimization procedures[C]//8th European Workshop on Structural Health Monitoring (EWSHM 2016). Bilbao: [s. n. ], 2016: 1-10.
    [23] 洪彧. 基于振动信号的桥梁结构模态参数识别与模型修正研究[D]. 成都:西南交通大学,2019.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-11-06
  • 网络出版日期:  2024-10-29

目录

    /

    返回文章
    返回