• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于多模态参数的高速公路驾驶人压力负荷检测方法

何杰 叶云涛 徐扬 张长健 秦鹏程

何杰, 叶云涛, 徐扬, 张长健, 秦鹏程. 基于多模态参数的高速公路驾驶人压力负荷检测方法[J]. 西南交通大学学报, 2025, 60(5): 1229-1239. doi: 10.3969/j.issn.0258-2724.20230327
引用本文: 何杰, 叶云涛, 徐扬, 张长健, 秦鹏程. 基于多模态参数的高速公路驾驶人压力负荷检测方法[J]. 西南交通大学学报, 2025, 60(5): 1229-1239. doi: 10.3969/j.issn.0258-2724.20230327
HE Jie, YE Yuntao, XU Yang, ZHANG Changjian, QIN Pengcheng. Method for Stress Detection of Freeway Drivers Based on Multimodal Parameters[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1229-1239. doi: 10.3969/j.issn.0258-2724.20230327
Citation: HE Jie, YE Yuntao, XU Yang, ZHANG Changjian, QIN Pengcheng. Method for Stress Detection of Freeway Drivers Based on Multimodal Parameters[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1229-1239. doi: 10.3969/j.issn.0258-2724.20230327

基于多模态参数的高速公路驾驶人压力负荷检测方法

doi: 10.3969/j.issn.0258-2724.20230327
基金项目: 国家自然科学基金项目(52072069)
详细信息
    作者简介:

    何杰(1973—),男,教授,博士,研究方向为道路交通安全理论与分析方法,E-mail:hejie@seu.edu.cn

  • 中图分类号: U491.2

Method for Stress Detection of Freeway Drivers Based on Multimodal Parameters

  • 摘要:

    为实现不依赖生理指标的驾驶人压力负荷实时检测,本文提出一种基于道路线形参数、视频图像和轮胎六分力的检测方法. 利用计算机视觉模型Deeplabv3从行车视频中提取场景元素语义信息来表征驾驶环境,并与车辆动力学参数和道路线形参数融合,构建多模态参数特征集,借助机器学习算法实现压力负荷检测;为验证方法的有效性,在金丽温高速公路开展实车实验,采集驾驶人眼动、心率数据、车辆动力学参数、道路线形参数和驾驶场景视频;最后,利用眼动、心率数据标定压力等级,选择随机森林、支持向量机、XGBoost和LightGBM 4种算法建立压力负荷检测模型,并用SHAP (shapley additive explained)值法进行影响因素分析. 结果表明:LightGBM模型性能最优,其宏平均和加权平均F1值分别达到91.99%和93.25%,所提方法能够实现准确的压力负荷检测;当轮胎回正力矩、垂向力、纵向力标准差分别超过0.0163 N•m、0.237 kN和0.229 kN时,路段曲率半径平均值小于317 m,路段缓和曲线比平均值低0.0296;天空占比变化率、景观占比、货车占比分别超过5.89%、14.85%、6.37%时,驾驶人处于高压力状态的概率较高. 由于所需数据易于获取,本文方法具有较高的应用可行性,可为高速公路安全性、舒适性评价提供参考,同时为高速公路的景观、线形设计以及车辆驾驶人警示系统设计提供理论支持.

     

  • 图 1  实验路线示意

    Figure 1.  Experiment route

    图 2  驾驶人状态数据

    Figure 2.  Driver’s status data

    图 3  车辆-道路-环境数据

    Figure 3.  Vehicle–freeway–environment data

    图 4  三维空间聚类效果

    Figure 4.  Three-dimension spatial clustering rendering

    图 5  Highway Driving数据集元素标注

    Figure 5.  Annotation for Highway Driving dataset

    图 6  语义分割结果示例

    Figure 6.  Example of semantic segmentation results

    图 7  SHAP值汇总

    Figure 7.  Summary of SHAP values

    图 8  SHAP依赖图

    Figure 8.  SHAP dependency graph

    表  1  时域分析指标

    Table  1.   Time-domain analysis indicators

    指标 定义
    SDNN/ms 相邻 R 峰间隔的标准差
    RMSSD/ms 相邻 R 峰间隔差值的均方根
    SDSD/ms 相邻 R 峰间隔差值的标准差
    下载: 导出CSV

    表  2  方差贡献率及因子提取结果

    Table  2.   Variance contribution rate and factor extraction results

    变量 特征根 方差贡献率/% 累计/%
    主成分 P1 2.952 42.170 42.170
    主成分 P2 1.437 20.523 62.694
    主成分 P3 1.255 17.924 80.618
    因子 R1 2.828 40.393 40.393
    因子 R2 1.438 20.545 60.938
    因子 R3 1.378 19.680 80.618
    下载: 导出CSV

    表  3  因子载荷矩阵

    Table  3.   Factor loading matrix

    参数 R1 R2 R3 共同度
    瞳孔面积 −0.105 0.829 0.058 0.780
    扫视次数 0.158 −0.172 0.791 0.732
    扫视持续时间 0.032 0.107 0.844 0.794
    注视持续时间 0.050 0.841 −0.109 0.721
    SDNN 0.941 −0.044 0.091 0.897
    RMSSD 0.983 −0.026 0.084 0.974
    SDSD 0.967 −0.019 0.097 0.945
    下载: 导出CSV

    表  4  驾驶人压力负荷分类结果

    Table  4.   Classification results of driver stress

    压力负荷状态 对应类别 样本数/个 占比/%
    低负荷 C2 904 61.50
    中负荷 C3 151 10.25
    高负荷 C1 416 28.25
    下载: 导出CSV

    表  5  驾驶人压力负荷检测模型的特征变量

    Table  5.   Characteristic variables of driver stress detection model

    变量类别 变量描述 单位
    场景元素 时间窗内每秒驾驶场景中道路(prop_road)/交通标志(prop_sign)/汽车(prop_car)/
    货车(prop_truck)/景观(prop_vegetation)元素占比的平均值
    %
    时间窗内每秒驾驶场景中天空(difprop_sky)/道路(difprop_road)/交通标志(difprop_sign)/
    汽车(difprop_car)/货车(difprop_truck)/景观(difprop_vegetation)元素占比的累计变化率
    %
    道路线形 时间窗内直线路段总里程占总行驶里程的比例(ratio_str) %
    时间窗内路段曲率半径的平均值(rad_curve) m
    时间窗内路段缓和曲线比的平均值(ratio_tc)
    时间窗内百米桩号之间的高程差绝对值的总和(abs_elevation) m
    时间窗内所有百米桩号高程的标准差(std_elevation) m
    时间窗内路段处于接近隧道段(tun1)/隧道出口段(tun2)/隧道群(tun3)位置的里程占总里程的比例 %
    车辆状态 时间窗内轮胎所受纵向力(std_Fx)/侧向力(std_Fy)/垂向力(std_Fz)的标准差 kN
    时间窗内轮胎所受滚动力矩(std_My)/回正力矩(std_Mz)的标准差 N•m
    时间窗内车辆行驶速度的标准差(std_v) km/h
    下载: 导出CSV

    表  6  模型超参数寻优结果

    Table  6.   Results of model hyperparameter optimization

    模型 超参数及寻优范围 寻优结果
    原始训练集 平衡训练集
    RF 决策树数量Tn∈{200,250,300,350,400},最大树深Td∈{5,10,15},
    单棵树可用特征上限Tf∈{5,10,15}
    Tn=350,Td=10,
    Tf=15
    Tn=300,Td=10,
    Tf=10
    SVM 正则化参数C∈{0.1,1,10,100},核函数系数G∈{0.1,1,10,100},
    核函数类型K∈{线性核,多项式核,径向基核}
    C=10,G=10,
    K=线性核
    C=10,G=10,
    K=线性核
    XGBoost 学习率L∈{0.01,0.05,0.1,0.2},最大树深Td∈{5,10,15},
    决策树数量Tn∈{200,250,300,350,400}
    L=0.01,Td=10,
    Tn=400
    L=0.01,Td=15,
    Tn=300
    LightGBM 学习率L∈{0.01,0.05,0.1,0.2},最大树深Td∈{5,10,15},
    决策树数量Tn∈{200,250,300,350,400}
    L=0.01,Td=10,
    Tn=300
    L=0.01,Td=15,
    Tn=200
    下载: 导出CSV

    表  7  模型检测性能评价

    Table  7.   Evaluation of model detection performance

    指标 负荷 原始训练集模型/% 平衡训练集模型/% 性能指标变化幅度/%
    RF SVM XGB Light-
    GBM
    RF SVM XGB Light-
    GBM
    RF SVM XGB Light-
    GBM
    精确率 低负荷 85.20 90.75 93.26 90.61 87.96 91.06 94.97 96.02 2.76 0.31 1.71 5.41
    中负荷 82.76 56.10 85.71 85.71 86.21 74.19 93.10 90.32 3.45 18.09 7.39 4.61
    高负荷 81.43 80.25 86.05 83.72 82.67 81.40 89.66 88.64 1.24 1.15 3.61 4.92
    宏平均 83.13 75.70 88.34 86.68 85.61 82.22 92.58 91.66 2.48 6.52 4.24 4.98
    加权平均 83.87 84.12 90.46 88.13 86.27 86.52 93.26 93.32 2.40 2.40 2.80 5.19
    召回率 低负荷 92.78 87.22 92.22 91.11 93.33 90.56 94.44 93.89 0.55 3.34 2.22 2.78
    中负荷 77.42 74.19 85.71 77.42 80.65 74.19 87.10 90.32 3.23 0.00 1.39 12.90
    高负荷 67.86 77.38 88.10 85.71 73.81 82.35 92.86 92.86 5.95 4.97 4.76 7.15
    宏平均 79.35 79.60 88.68 84.75 82.60 82.37 91.47 92.36 3.25 2.77 2.79 7.61
    加权平均 84.07 83.05 90.41 88.14 86.44 86.49 93.22 93.22 2.37 3.44 2.81 5.08
    F1 值 低负荷 88.83 88.95 92.74 90.86 90.57 90.81 94.71 94.94 1.74 1.86 1.97 4.08
    中负荷 80.00 63.89 85.71 81.36 83.33 74.19 90.00 90.32 3.33 10.30 4.29 8.96
    高负荷 74.03 78.79 87.06 84.71 77.99 81.87 91.23 90.70 3.96 3.08 4.17 5.99
    宏平均 80.95 77.21 88.50 85.64 83.96 82.29 91.98 91.99 3.01 5.08 3.48 6.35
    加权平均 83.69 83.42 90.43 88.11 86.22 86.50 93.22 93.25 2.53 3.08 2.79 5.14
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2024.
    [2] KHATTAK A J, AHMAD N, WALI B, et al. A taxonomy of driving errors and violations: evidence from the naturalistic driving study[J]. Accident Analysis & Prevention, 2021, 151: 105873.1-105873.20.
    [3] WANG J J, XU W, GONG Y H. Real-time driving danger-level prediction[J]. Engineering Applications of Artificial Intelligence, 2010, 23(8): 1247-1254. doi: 10.1016/j.engappai.2010.01.001
    [4] USECHE S A, ORTIZ V G, CENDALES B E. Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers[J]. Accident Analysis & Prevention, 2017, 104: 106-114.
    [5] HEALEY J A, PICARD R W. Detecting stress during real-world driving tasks using physiological sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2): 156-166. doi: 10.1109/TITS.2005.848368
    [6] 胡月琦. 高速公路隧道路段驾驶人心智游移及心理负荷与安全风险研究[D]. 西安: 长安大学, 2021.
    [7] AGRAWAL S, PEETA S. Evaluating the impacts of situational awareness and mental stress on takeover performance under conditional automation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83: 210-225. doi: 10.1016/j.trf.2021.10.002
    [8] HUANG J, LIU Y, PENG X Y. Recognition of driver’s mental workload based on physiological signals, a comparative study[J]. Biomedical Signal Processing and Control, 2022, 71: 103094.1-103094.9.
    [9] URBANO M, ALAM M, FERREIRA J, et al. Cooperative driver stress sensing integration with eCall system for improved road safety[C]//IEEE EUROCON 2017-17th International Conference on Smart Technologies. Ohrid: IEEE, 2017: 883-888.
    [10] 黄晶, 杨梦婷. 考虑初始情绪的个性化驾驶负荷状态评价[J]. 中国公路学报, 2021, 34(1): 167-176.

    HUANG Jing, YANG Mengting. Initial emotion-based evaluation of the personalized driving load state[J]. China Journal of Highway and Transport, 2021, 34(1): 167-176.
    [11] TAVAKOLI A, HEYDARIAN A. Multimodal driver state modeling through unsupervised learning[J]. Accident Analysis & Prevention, 2022, 170: 106640.1-106640.17
    [12] CHEN L L, ZHAO Y, YE P F, et al. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers[J]. Expert Systems with Applications, 2017, 85: 279-291. doi: 10.1016/j.eswa.2017.01.040
    [13] LEHTONEN E, LAPPI O, SUMMALA H. Anticipatory eye movements when approaching a curve on a rural road depend on working memory load[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2012, 15(3): 369-377. doi: 10.1016/j.trf.2011.08.007
    [14] LAZARO M J, YUN M H, KIM S. Stress-level and attentional functions of experienced and novice young adult drivers in intersection-related hazard situations[J]. International Journal of Industrial Ergonomics, 2022, 90: 103315.1-103315.9. doi: 10.1016/j.ergon.2022.103315
    [15] 赵亮. 农村公路复杂条件下驾驶人典型生理心理指标变化规律及驾驶行为研究[D]. 西安: 长安大学, 2018.
    [16] RASTGOO M N, NAKISA B, MAIRE F, et al. Automatic driver stress level classification using multimodal deep learning[J]. Expert Systems with Applications, 2019, 138: 112793.1-112793.11.
    [17] MOU L T, ZHOU C, ZHAO P F, et al. Driver stress detection via multimodal fusion using attention-based CNN-LSTM[J]. Expert Systems with Applications, 2021, 173: 114693.1-114693.11.
    [18] 符锌砂, 葛洪成, 鲁岳. 基于LightGBM的高速公路隧道段驾驶人压力负荷评估[J]. 交通运输研究, 2022, 8(5): 46-55.

    FU Xinsha, GE Hongcheng, LU Yue. Driver stress load assessment of freeway tunnel sections based on LightGBM[J]. Transport Research, 2022, 8(5): 46-55.
    [19] LANATA A, VALENZA G, GRECO A, et al. How the autonomic nervous system and driving style change with incremental stressing conditions during simulated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 16(3): 1505-1517.
    [20] ELAMRANI ABOU ELASSAD Z, MOUSANNIF H, AL MOATASSIME H. A real-time crash prediction fusion framework: an imbalance-aware strategy for collision avoidance systems[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102708.1-102708.24.
    [21] DI STASI L L, RENNER R, Catena A, et al. Towards a driver fatigue test based on the saccadic main sequence: a partial validation by subjective report data[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 122-133. doi: 10.1016/j.trc.2011.07.002
    [22] ESKANDARIAN A, MORTAZAVI A. Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection[C]//2007 IEEE Intelligent Vehicles Symposium. Turkey: IEEE, 2007: 553-559.
    [23] ZHANG C J, HE J, YAN X T, et al. Exploring relationships between microscopic kinetic parameters of tires under normal driving conditions, road characteristics and accident types[J]. Journal of Safety Research, 2021, 78: 80-95. doi: 10.1016/j.jsr.2021.05.010
    [24] SANG F, LUO R, CHEN Y, et al. Factor analysis evaluation of asphalt pavement performance considering structural strength and hidden cracks[J]. Construction and Building Materials, 2023, 408: 133651.1-133651.12.
    [25] WOOD J M. Vision impairment and on-road driving[J]. Annual Review of Vision Science, 2022, 8: 195-216. doi: 10.1146/annurev-vision-100820-085030
    [26] KIM B, YIM J, KIM J. Highway driving dataset for semantic video segmentation[C]//British Machine Vision Conference. Newcastle: British Machine Vision Association, 2018: 52286240.1-52286240.12.
    [27] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//The 31st Conference on Neural Information Processing Systems. California: Curran Associates Inc, 2017: 4768–4777.
    [28] SACHS H K. On the influence of weight reduction and weight distribution on vehicle handling, ride and performance[J]. Vehicle System Dynamics, 1974, 3(3): 163-191. doi: 10.1080/00423117408968454
    [29] 许金良, 王荣华, 冯志慧, 等. 基于动视觉特性的高速公路景观敏感区划分[J]. 交通运输工程学报, 2015, 15(2): 1-9.

    XU Jinliang, WANG Ronghua, FENG Zhihui, et al. Classification of expressway landscape sensitive zone based on dynamic visual characteristics[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 1-9.
    [30] 孔德文. 大型车辆对多车道高速公路交通运行影响研究[D]. 南京: 东南大学, 2018.
    [31] 徐婷, 邓恺龙, 刘永涛, 等. 基于航测数据的不同风格换道轨迹规划[J]. 西南交通大学学报, 2024, 59(3): 720-728.

    XU Ting, DENG Kailong, LIU Yongtao, et al. Different styles of lane changing trajectory planning based on aerial survey data[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 720-728.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  50
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2024-03-29
  • 网络出版日期:  2025-07-12
  • 刊出日期:  2024-04-11

目录

    /

    返回文章
    返回