• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

Taylor-Couette波状涡流场环隙波动的变化特征

毛玉红 陈超 李亚蓉 付海煜

毛玉红, 陈超, 李亚蓉, 付海煜. Taylor-Couette波状涡流场环隙波动的变化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230308
引用本文: 毛玉红, 陈超, 李亚蓉, 付海煜. Taylor-Couette波状涡流场环隙波动的变化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230308
MAO Yuhong, CHEN Chao, LI Yarong, FU Haiyu. Fluctuation Characteristics of Wavy Vortex Field within Annular Gap in Taylor-Couette[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230308
Citation: MAO Yuhong, CHEN Chao, LI Yarong, FU Haiyu. Fluctuation Characteristics of Wavy Vortex Field within Annular Gap in Taylor-Couette[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230308

Taylor-Couette波状涡流场环隙波动的变化特征

doi: 10.3969/j.issn.0258-2724.20230308
基金项目: 国家自然科学基金项目(51968038,51468029);甘肃省重点研发计划(23YFGA0048);甘肃省教育厅高校科研创新平台重大培育项目(2024CXPT-14)
详细信息
    作者简介:

    毛玉红(1972—),女,教授,博士,研究方向为水处理理论与技术,E-mail:maoyuhong@126.com

  • 中图分类号: TV131

Fluctuation Characteristics of Wavy Vortex Field within Annular Gap in Taylor-Couette

  • 摘要:

    为研究Taylor-Couette环隙流场波状涡涡间的波动变化情况,采用大涡模拟(LES)方法对Taylor-Couette波状涡流场进行瞬态数值模拟,并从二维和三维的角度对环隙间波状涡流场进行分析. 结果表明:波状涡流场中二维环隙子午面速度矢量场存在周期性波动变化特征,在周期始末时刻速度矢量场基本保持一致;涡交界位置处的轴向速度方向在不断发生周期性变化,径向和切向速度方向保持不变;涡对间各向速度值均大于涡对内的涡间,主流液体传递主要发生在外向流的涡对间;另一方面,三维波状涡流场涡旋周期波动现象明显,也具有周期特征,各工况(10、20、30、40 r/min)的周期分别为12.94、6.80、1.93、1.49 s;随着旋转雷诺数增大,涡旋波动幅度大幅减小,波动周期也缩短;环隙间主流液体在涡间的周期性流动带动流体微团在环隙间绕内筒做螺旋偶合涡旋转运动.

     

  • 图 1  Taylor-Couette反应器几何模型及网格划分示意

    Figure 1.  Geometry model and meshing for Taylor-Couette reactor

    图 2  大涡模拟与PIV测量环隙子午面速度矢量图对比

    Figure 2.  Comparison between LES and PIV measurement of velocity vector on meridian plane

    图 3  涡对及特征线位置示意

    Figure 3.  Vortex pairs and position of characteristic lines

    图 5  各转速工况特征线上一个周期内轴向速度随时间的变化

    Figure 5.  Variation of axial velocity with time along characteristic line at different rotational velocities within a cycle

    图 6  各转速工况特征线上一个周期内径向速度随时间的变化

    Figure 6.  Variation of radial velocity with time along characteristic line at different rotational velocities within a cycle

    图 7  各转速工况特征线上一个周期内切向速度随时间的变化

    Figure 7.  Variation of tangential velocity with time along characteristic line at different rotational velocities within a cycle

    图 4  各转速工况下速度矢量图周期变化过程

    Figure 4.  Periodic variations in velocity vector diagram at different rotational velocities

    图 8  各工况特征线上各向最大速度对比

    Figure 8.  Comparison of maximum velocities along characteristic line under various working conditions

    图 9  各工况三维涡旋等值面周期内变化

    Figure 9.  Variation of three-dimensional vortex isosurface within a cycle under various working conditions

    图 10  环隙子午面半周期内流线波动三维示意

    Figure 10.  Three-dimensional diagram of streamline fluctuations in half-period on meridian plane

  • [1] SCHRIMPF M, ESTEBAN J, WARMELING H, et al. Taylor-Couette reactor: Principles, design, and applications[J]. AIChE Journal, 2021, 67(5): e17228. doi: 10.1002/aic.17228
    [2] KÁDÁR R, BALAN C. Transient dynamics of the wavy regime in Taylor–Couette geometry[J]. European Journal of Mechanics–B, 2012, 31: 158-167. doi: 10.1016/j.euromechflu.2011.07.003
    [3] MAO Y H, CHANG Q, ZENG L Y, et al. Velocity field structure and flocculation efficiency in Taylor–Couette flow[J]. Separation Science and Technology, 2013, 48(4): 659-663. doi: 10.1080/01496395.2012.692420
    [4] DASH A, ANANTHARAMAN A, POELMA C. Particle-laden Taylor-Couette flows: higher-order transitions and evidence for azimuthally localized wavy vortices[J]. Journal of Fluid Mechanics, 2020, 903: A20.1-A20.35.
    [5] CHOUIPPE A, CLIMENT É, LEGENDRE D, et al. Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow[J]. Physics of Fluids, 2014, 26(4).
    [6] TENG H, LIU N, LU X, et al. Direct numerical simulation of Taylor–Couette flow subjected to a radial temperature gradient[J]. Physics of Fluids, 2015, 27(12).
    [7] BAROUDI L, MAJJI M V, PELUSO S, et al. Taylor–Couette flow of hard-sphere suspensions: overview of current understanding[J]. Philosophical Transactions of the Royal Society A, 2023, 381(2243): 20220125. doi: 10.1098/rsta.2022.0125
    [8] RUDMAN M, METCALFE G, GRAHAM L J W. Nonmixing vortex cores in wavy Taylor vortex flow[J]. Physics of fluids, 2008, 20(6).
    [9] 郑云,刘志祥,余志祥,等. 基于PIV试验的积雪平屋面风场特性研究[J]. 西南交通大学学报,2023,58(02): 430-437,461.
    [10] ZHENG Y, LIU Z X, YU Z X, et al. Wind field characteristics of snow-covered low-rise building roof based on PIV experiments[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 430-437,461.
    [11] LUO G, YAO Z, SHEN H. A new hybrid turbulence model applied to highly turbulent Taylor–Couette flow[J]. Physics of Fluids, 2018, 30(6): 065103.1-065103.12.
    [12] CHENG W, PULLIN D I, SAMTANEY R. Large-eddy simulation and modelling of Taylor–Couette flow[J]. Journal of Fluid Mechanics, 2020, 890: A17. doi: 10.1017/jfm.2020.101
    [13] ZHIYIN Y. Large-eddy simulation: Past, present and the future[J]. Chinese journal of Aeronautics, 2015, 28(1): 11-24. doi: 10.1016/j.cja.2014.12.007
    [14] 蒋媛,刘锦阳,回忆,等. 水平肋板对高层建筑气动特性的影响研究[J/OL]. 西南交通大学学报,1-9 [2024-10-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20240130.1045.012.html.

    JIANG Y, LIU J Y, HUI Y, et al. Study on the impact of horizontal ribs on the aerodynamic characteristics of high-rise building[J]. Journal of Southwest Jiaotong University, 1-9[2024-10-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20240130.1045.012.html.
    [15] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报,2020,38(3): 413-431 + 478.

    LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta aerodynamica sinica, 2020, 38(3): 413-431 + 478.
    [16] DONG X, WANG Y, CHEN X, et al. Determination of epsilon for Omega vortex identification method[J]. Journal of Hydrodynamics, 2018, 30(4): 541-548. doi: 10.1007/s42241-018-0066-x
  • 加载中
图(10)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-10-23
  • 网络出版日期:  2024-11-09

目录

    /

    返回文章
    返回