• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同速率下松散颗粒直剪试验声发射特征

吴鑫 罗筱毓 李龙灿 刘永红 朱旭 林华李

吴鑫, 罗筱毓, 李龙灿, 刘永红, 朱旭, 林华李. 不同速率下松散颗粒直剪试验声发射特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230179
引用本文: 吴鑫, 罗筱毓, 李龙灿, 刘永红, 朱旭, 林华李. 不同速率下松散颗粒直剪试验声发射特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230179
WU Xin, LUO Xiaoyu, LI Longcan, LIU Yonghong, ZHU Xu, LIN Huali. Acoustic Emission Characteristics of Loose Particles in Direct Shear Test at Different Rates[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230179
Citation: WU Xin, LUO Xiaoyu, LI Longcan, LIU Yonghong, ZHU Xu, LIN Huali. Acoustic Emission Characteristics of Loose Particles in Direct Shear Test at Different Rates[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230179

不同速率下松散颗粒直剪试验声发射特征

doi: 10.3969/j.issn.0258-2724.20230179
基金项目: 国家应急管理部安全生产重特大事故防治关键技术项目(sichuan-0011-2018AQ);四川省科技计划项目(24NSFSC0343,19YYJC2854)
详细信息
    作者简介:

    吴鑫(1983—),男,博士,副教授,研究方向为矿山岩土力学与安全检测技术,E-mail:xinwu@sicnu.edu.cn

  • 中图分类号: X936

Acoustic Emission Characteristics of Loose Particles in Direct Shear Test at Different Rates

  • 摘要:

    松散颗粒堆积体在自然界和工业生产活动中广泛存在. 为研究其力学性质和失稳过程,基于声发射(acoustic emission, AE)技术探究松散体剪切过程的声学特征演化规律. 首先,分析松散颗粒在不同剪切速率下的AE特征参数;其次,结合加载过程的力学特征对AE演化阶段进行划分;最后,利用频谱变化和小波包能量占比进一步验证松散颗粒剪切破坏的AE演化规律. 结果表明:能量和振铃计数随剪切过程而逐步增大,且剪切速率越快,能量和振铃计数增幅越大;小事件数与大事件数的比值(b值)在剪切过程中逐渐降低,剪切速率越大,b值越小;不同速率下的颗粒抗剪强度约为140 kPa,剪切力峰值集中在400 N左右,振铃计数、AE能量与b值在剪切运动过程中的变化与剪切破坏阶段密切相关;频谱重心会随剪切过程逐步降低,从大约350 kHz降低至250 kHz,同时,较低频带能量占比增加、较高频带能量占比减少,导致频谱重心不断下移.

     

  • 图 1  试验仪器及试件

    Figure 1.  Test instrument and specimen

    图 2  剪应力-位移图

    Figure 2.  Shear stress-displacement diagram

    图 3  振铃计数变化示意

    Figure 3.  Schematic diagram of ringing count changes

    图 4  不同剪切速率下AE能量变化示意

    Figure 4.  Schematic of AE energy changes at different shear rates

    图 5  不同剪切速率下b值变化示意

    Figure 5.  Diagram of b value changes at different shear rates

    图 6  松散颗粒体剪切破坏过程分段示意

    Figure 6.  Sectional diagram of shear failure process of loose particles

    图 7  不同速率下剪切破坏过程振铃计数规律

    Figure 7.  Ringing count law of shear failure process at different rates

    图 8  不同速率下剪切破坏过程能量规律

    Figure 8.  Energy law of shear failure process at different rates

    图 9  不同速率下剪切破坏过程b值规律

    Figure 9.  b value rule of shear failure process at different rates

    图 10  不同速率下剪切破坏过程频谱重心规律

    Figure 10.  Spectral barycenter of shear failure process at different rates

    图 11  不同速率下频谱重心分布情况

    Figure 11.  Distribution of spectral barycenter at different rates

    图 12  0~187.5 kHz及187.5~375.0 kHz频带能量占比变化情况

    Figure 12.  Changes in energy proportion of frequency bands of 0–187.5 and 187.5–375 kHz

  • [1] 韦忠跟,徐玉龙,丁辉,等. 霍林河北露天煤矿排土场边坡滑坡模式与雷达监测预警[J]. 现代矿业,2022,38(1): 71-74,78. doi: 10.3969/j.issn.1674-6082.2022.01.016

    WEI Zhonggen, XU Yulong, DING Hui, et al. Slope landslide mode and radar monitoring and early warning of dump slope in Huolinhe north open-pit coal mine[J]. Modern Mining, 2022, 38(1): 71-74, 78. doi: 10.3969/j.issn.1674-6082.2022.01.016
    [2] 张庆斌,赵之星,刘志奇. 基于单目影像对滑坡监测应急预警的方法探究[J]. 煤炭科学技术,2021,49(7): 185-191.

    ZHANG Qingbin, ZHAO Zhixing, LIU Zhiqi. Study on method of emergency warning for landslide monitoring based on monocular images[J]. Coal Science and Technology, 2021, 49(7): 185-191.
    [3] 吴绿川,王剑辉,符彦. 基于InSAR技术和光学遥感的贵州省滑坡早期识别与监测[J]. 测绘通,2021(7): 98-102.

    WU Lvchuan, WANG Jianhui, FU Yan. Early identifying and monitoring landslides in Guizhou province with InSAR and optical remote sensing[J]. Bulletin of Surveying and Mapping, 2021(7): 98-102.
    [4] MAO W W, HEI L S, YANG Y. Advances on the acoustic emission testing for monitoring of granular soils[J]. Measurement, 2021, 185: 110110.1-110110.9.
    [5] SHIOTANI T. Evaluation of long-term stability for rock slope by means of acoustic emission technique[J]. NDT & E International, 2006, 39(3): 217-228.
    [6] DIXON N, SPRIGGS M. Quantification of slope displacement rates using acoustic emission monitoring[J]. Canadian Geotechnical Journal, 2007, 44(8): 966-976. doi: 10.1139/T07-046
    [7] 李文彪,王轶,陈新,等. 基于声发射监测的路堤相似模拟破坏过程分形特征研究[J]. 公路,2017,62(7): 33-38.

    LI Wenbiao, WANG Yi, CHEN Xin, et al. Fractal analysis of similar simulation of embankment failure process based on acoustic emission monitoring technology[J]. Highway, 2017, 62(7): 33-38.
    [8] CODEGLIA D, DIXON N, FOWMES G J, et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms[J]. Engineering Geology, 2017, 219: 21-31. doi: 10.1016/j.enggeo.2016.11.021
    [9] JIANG Y, WANG G H, KAMAI T. Acoustic emission signature of mechanical failure: insights from ring-shear friction experiments on granular materials[J]. Geophysical Research Letters, 2017, 44(6): 2782-2791. doi: 10.1002/2016GL071196
    [10] HU W, SCARINGI G, XU Q, et al. Acoustic emissions and microseismicity in granular slopes prior to failure and flow-like motion: the potential for early warning[J]. Geophysical Research Letters, 2018, 45(19): 10406-10415.
    [11] 贺可强. 复杂堆积层滑坡的稳定性评价方法分析与展望[J]. 青岛理工大学学报,2016,37(1): 1-9,26.

    HE Keqiang. Analysis and prospects of the stability evaluation methods of the complicated colluvial landslides[J]. Journal of Qingdao University of Technology, 2016, 37(1): 1-9, 26.
    [12] 龙小翠. 山体滑坡中声发射信号的检测及定位方法研究[D]. 成都: 成都理工大学,2016.
    [13] 丛宇,王在泉,郑颖人,等. 卸围压路径下大理岩破坏过程的声发射特性试验研究[J]. 西南交通大学学报,2014,49(1): 97-104.

    CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on acoustic emission features of marbles during unloading failure process[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 97-104.
    [14] AJMERA B, TIWARI B, SHRESTHA D. Effect of mineral composition and shearing rates on the undrained shear strength of expansive clays[C]// GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering. Oakland: American Society of Civil Engineers, 2012: 1185-1194.
    [15] 吴鑫,王雪梅,罗筱毓,等. 不同加载速率下波导杆三点弯曲声发射参数分析[J]. 中国安全科学学报,2021,31(10): 159-166.

    WU Xin, WANG Xuemei, LUO Xiaoyu, et al. Analysis of AE parameters of waveguide rod at different loading rates under three-point bending[J]. China Safety Science Journal, 2021, 31(10): 159-166.
    [16] 王璐,刘建锋,裴建良,等. 细砂岩破坏全过程渗透性与声发射特征试验研究[J]. 岩石力学与工程学报,2015,34(增1): 2909-2914.

    WANG Lu, LIU Jianfeng, PEI Jianliang, et al. Experimental research on permeability and acoustic emission characteristics during whole failure process of fine sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2909-2914.
    [17] 刘建锋,丁国生,张强星,等. 弯曲加卸载下杂质盐岩断裂力学行为特征研究[J]. 工程科学与技术,2020,52(3): 107-114.

    LIU Jianfeng, DING Guosheng, ZHANG Qiangxing, et al. Investigation on fracture mechanical behavior of salt rock with impurities under bending loading-unloading conditions[J]. Advanced Engineering Sciences, 2020, 52(3): 107-114.
  • 加载中
图(12)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-07-25
  • 网络出版日期:  2024-09-21

目录

    /

    返回文章
    返回