• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

车辆油气悬架技术研究综述

刘秀梅 李永涛

张春祥, 徐志峰, 高雪瑶. 一种半监督的汉语词义消歧方法[J]. 西南交通大学学报, 2019, 54(2): 408-414. doi: 10.3969/j.issn.0258-2724.20170178
引用本文: 刘秀梅, 李永涛. 车辆油气悬架技术研究综述[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230168
ZHANG Chunxiang, XU Zhifeng, GAO Xueyao. Semi-Supervised Method for Chinese Word Sense Disambiguation[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 408-414. doi: 10.3969/j.issn.0258-2724.20170178
Citation: LIU Xiumei, LI Yongtao. Review of Research on Vehicle Hydro-Pneumatic Suspension Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230168

车辆油气悬架技术研究综述

doi: 10.3969/j.issn.0258-2724.20230168
基金项目: 国家自然科学基金项目(51875559)
详细信息
    作者简介:

    刘秀梅(1982—),女,教授,研究方向为流体传动与控制,E-mail:liuxm@cumt.edu.cn

  • 中图分类号: TH137;U463.33

Review of Research on Vehicle Hydro-Pneumatic Suspension Technology

  • 摘要:

    油气悬架具有缓冲减振、车身姿态调整等功能,其结构复杂、压力冲击大、耐磨性与密封性要求高,优良的悬架油缸结构、油气悬架系统及控制方法是决定车辆行驶性能的重要条件. 首先,从悬架结构、工作特性与控制方式等方面系统阐述了油气悬架的构成型式,归纳总结油气悬架的分类与原理;然后,基于悬架可控制性角度,从油气悬架的结构设计与优化、数学建模、控制算法与策略等方面论述油气悬架技术,分析现有结构的特点与不足得出:被动悬架结构简单、技术成熟,但缺乏自适应性;半主动悬架能耗小、成本较低、响应快、可靠性高,但自适应性有限;主动悬架性能优良,但能耗大、成本高、系统结构与控制策略复杂. 最后,总结与展望3种悬架的发展现状和研究方向,为车辆油气悬架设计与控制方法的深入研究和发展提供参考.

     

  • 图 1  被动、半主动与主动油气悬架结构原理

    Figure 1.  Structural principle of passive, semi-active, and active hydro-pneumatic suspension

    图 2  准零刚度油气悬架

    Figure 2.  Quasi-zero stiffness hydro-pneumatic suspension

    图 3  能量收集悬架

    Figure 3.  Energy collection suspension

    图 4  双室悬架油缸结构简图[44]

    Figure 4.  Double-chamber suspension cylinder structure[44]

    图 5  基于压电能量收集器的悬架单元

    Figure 5.  Suspension unit based on piezoelectric energy collector

    图 6  半主动悬架系统研究思路框图

    Figure 6.  Block diagram of semi-active suspension system study

    图 7  能量再生半主动悬架[69]

    Figure 7.  Energy regenerative semi-active suspension[69]

    图 8  主动油气悬架研究思路框图

    Figure 8.  Block diagram of active hydro-pneumatic suspension study

    图 9  车辆主动悬架系统

    Figure 9.  Vehicle active suspension system

    图 10  基于LVQ路面辨识方法的悬架主动控制流程

    Figure 10.  Flow chart of active control of loader suspension based on LVQ road identification method

    图 11  基于舒适性及安全性的主动悬架协同控制原理

    Figure 11.  Cooperative control principle of active suspension based on comfort and safety

    图 12  基于GRNN和PID反馈的控制策略

    Figure 12.  The control strategy based on GRNN and PID feedback

    表  1  悬架控制理论分类及特点

    Table  1.   Suspension control theory classification and characteristics

    控制理论 控制特点
    天棚阻尼  根据簧载质量速度反馈实现阻尼控制,计算简便、响应快、鲁棒性强,广泛应用于半主动悬架,但只考虑幅频特性、忽略相频,致使传递函数评价悬架性能存在不确定性,在具体应用中存在局限性[17-18]
    模糊控制  基于专家经验准则、基于模糊规则及隶属函数,以“if-then”为控制逻辑处理系统不确定性参数控制问题,对模型精度要求低、适应性强、鲁棒性好且易于理解,但精度低且因主观经验影响控制效果,对其实际应用造成局限性[19]
    最优控制  在已知运动方程及控制范围前提下,通过性能指标参数优化实现其指标函数的最优调控,此方法目的明确且计算速度快,包括线性、非线性最优调控及H最优控制等,但实际悬架含有许多不确定因素,因而难以达到预期控制性能[20-21]
    自适应控制  因路面工况、环境等不确定因素会影响油气悬架性能,而自适应控制基于数学模型,依据实际路面激励的变化对悬架系统参数进行实时合理、自动调节,以保持良好工作性能,但控制方案复杂、运算量大,有模型参考自适应和自校正控制两类[22]
    PID(proportional integral derivative)控制  控制器输入输出间无需精确数学模型,通过对输入量的比例、积分、微分参数修定可得合理的输出量,该方法简单实用,但控制效果较差且参数整定影响系统响应速度[23]
    遗传算法  基于自然选择与遗传机理,通过选择、交叉与变异寻找问题最优解,搜索过程简单、覆盖面大,适应度函数选取不当易陷入局部最优解且容易过早收敛、效率低
    神经网络  依据动物神经元的大规模信息处理、传递存储等特点而提出,具备信息并行处理、容错能力强与自适应学习等特点,多用于处理系统复杂非线性问题,可逼近任意连续函数[24]
    变结构滑模控制  系统结构不固定,可依据系统当前的信息调整其结构,改变控制规则,具备操作简单、响应迅速、对干扰不敏感,通过调整滑模面或控制律参数可增强其控制性能[25]
    复合控制  依据不同控制方法的特点以及被控对象的工作特性,通过各方法性能匹配,实现系统单个或者多目标控制,充分发挥各自优点并弥补其缺陷,具备优良控制性能及稳定性,常用模糊 PID、模糊滑模控制、模糊神经网络等
    下载: 导出CSV
  • [1] 王连志,赵北,黎德才,等. 矿用宽体车油气悬架系统及整车动力学仿真[J]. 液压与气动,2020(11): 158-163.

    WANG Lianzhi, ZHAO Bei, LI Decai, et al. Simulation of hydro-pneumatic suspension and vehicle dynamics system of wide body truck for mine[J]. Chinese Hydraulics & Pneumatics, 2020(11): 158-163.
    [2] 宋勇,刘林鑫,李占龙,等. 含圆弧形缓冲结构的仿袋鼠腿悬架建模与行为特性研究[J]. 西安交通大学学报,2021,55(9): 28-38.

    SONG Yong, LIU Linxin, LI Zhanlong, et al. Research on modeling and behavioral characteristics of bionic kangaroo leg suspension with circular arc-buffer structures[J]. Journal of Xi’an Jiaotong University, 2021, 55(9): 28-38.
    [3] 周德成,王国强,刘玉臣,等. 油气悬挂缸参数对车辆平顺性影响的理论研究[J]. 农业机械学报,2004,35(5): 25-28.

    ZHOU Decheng, WANG Guoqiang, LIU Yuchen, et al. Effects of parameters of hydro-pneumatic suspension cylinder on vehicle ride comfort[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5): 25-28.
    [4] 苗明,方新,王欣,等. 连通式油气悬挂系统阻尼特性分析[J]. 中国工程机械学报,2012,10(1): 23-28.

    MIAO Ming, FANG Xin, WANG Xin. Damping property analysis on interconnecting oil-gas suspension system[J]. Chinense Journal of Construction Machinery, 2012, 10(1): 23-28.
    [5] 甄龙信,张文明. 单气室油气悬架的仿真与试验研究[J]. 机械工程学报,2009,45(5): 290-294. doi: 10.3901/JME.2009.05.290

    ZHEN Longxin, ZHANG Wenming. Research on simulation and experiment of hydro-pneumatic suspension with single gas cell[J]. Journal of Mechanical Engineering, 2009, 45(5): 290-294. doi: 10.3901/JME.2009.05.290
    [6] 刘涛. 基于半主动油气悬架的车身姿态补偿控制研究[D]. 镇江:江苏大学,2019.
    [7] 田文朋. 七桥登高车混连油气悬架系统特性研究[D]. 西安:长安大学,2018.
    [8] 何淼. TLD110矿用自卸车前油气悬架系统研究[D]. 西安:长安大学,2018.
    [9] 孙建民,刘祥,张帅,等. 重载工程车辆油气悬架系统控制技术研究现状分析[J]. 中国工程机械学报,2021,19(6): 482-486.

    SUN Jianmin, LIU Xiang, ZHANG Shuai, et al. Control technology analysis of hydro pneumatic suspension system for heavy duty engineering vehicle[J]. Chinese Journal of Construction Machinery, 2021, 19(6): 482-486.
    [10] 孙齐超. 油气悬架系统神经网络控制策略研究[D]. 太原:太原科技大学,2018.
    [11] 杨波,陈思忠,王勋,等. 双气室油气悬架特性研究[J]. 机械工程学报,2009,45(5): 276-280. doi: 10.3901/JME.2009.05.276

    YANG Bo, CHEN Sizhong, WANG Xun, et al. Research of twin-accumulator hydro-pneumatic suspension[J]. Journal of Mechanical Engineering, 2009, 45(5): 276-280. doi: 10.3901/JME.2009.05.276
    [12] 刘伯庚. 非线性油气悬架参数优化设计[D]. 北京:北京理工大学,2016.
    [13] 刘刚,陈思忠,王文竹,等. 基于AMEsim和Simulink的油气悬架仿真与试验[J]. 振动、测试与诊断,2016,36(2): 346-350.

    LIU Gang, CHEN Sizhong, WANG Wenzhu, et al. Simulation and test of hydro-pneumatic suspension based on AMEsim and Simulink[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(2): 346-350.
    [14] 武德. 超大吨位全地面起重机油气悬架系统控制策略研究[D]. 太原:太原科技大学,2015.
    [15] 王亚曦. 磁流变液减振器CAD建模技术研究及应用[D]. 杭州:浙江大学,2006.
    [16] Dave Crolla,喻凡. 车辆动力学及其控制[M]. 北京:人民交通出版社,2004.
    [17] 史文库,张曙光,陈志勇,等. 磁流变半主动座椅悬架建模及振动特性分析[J]. 西南交通大学学报,2023,58(2): 253-260.

    SHI Wenku, ZHANG Shuguang, CHEN Zhiyong, et al. Modeling and vibration analysis of semi-active seat suspension with magnetorheological damper[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 253-260.
    [18] 寇发荣,魏冬冬,梁津,等. 一种馈能型混合悬架的多模式协调控制[J]. 中国机械工程,2018,29(11): 1356-1363.

    KOU Farong, WEI Dongdong, LIANG Jin, et al. Multi-mode coordination control of a kind of regenerative energy hybrid suspensions[J]. China Mechanical Engineering, 2018, 29(11): 1356-1363.
    [19] 张微敬,欧进萍. 基于粗糙集理论的结构振动模糊控制[J]. 振动工程学报,2005,18(4): 406-411.

    ZHANG Weijing, OU Jinping. Fuzzy control of structural vibration based on rough set theory[J]. Journal of Vibration Engineering, 2005, 18(4): 406-411.
    [20] SU X Y. Master-slave control for active suspension systems with hydraulic actuator dynamics[J]. IEEE Access, 2017, 5: 3612-3621. doi: 10.1109/ACCESS.2017.2672598
    [21] 孙凤,邢大壮,周冉,等. 考虑能耗的电磁主动悬架 LQR控制策略[J]. 西南交通大学学报,2023,58(4): 754-760,798. doi: 10.3969/j.issn.0258-2724.20220815

    SUN Feng, XING Dazhuang, ZHOU Ran, et al. LQR control for electromagnetic active suspension considering energy consumption[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 754-760,798. doi: 10.3969/j.issn.0258-2724.20220815
    [22] 郑玲,邓兆祥,李以农. 汽车半主动悬架的模型参考自适应控制[J]. 中国公路学报,2005,18(2): 99-102.

    ZHENG Ling, DENG Zhaoxiang, LI Yinong. Model reference adaptive control of semi-active suspensions[J]. China Journal of Highway and Transport, 2005, 18(2): 99-102.
    [23] 杨启耀,周孔亢,张文娜,等. 半主动空气悬架 Fuzzy-PID控制[J]. 农业机械学报,2008,39(9): 25-29.

    YANG Qiyao, ZHOU Kongkang, ZHANG Wenna, et al. Fuzzy-PID control on semi-active air suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 25-29.
    [24] 杨林,赵玉壮,陈思忠,等. 半主动油气悬架的神经网络模型参考控制[J]. 北京理工大学学报,2011,31(1): 24-28.

    YANG Lin, ZHAO Yuzhuang, CHEN Sizhong, et al. Neural network model reference control for semi-active hydro-pneumatic suspension[J]. Transactions of Beijing Institute of Technology, 2011, 31(1): 24-28.
    [25] 秦武,上官文斌,吕辉. 非线性二自由度主动悬架滑模控制方法的研究[J]. 机械工程学报,2020,56(1): 58-68. doi: 10.3901/JME.2020.01.058

    QIN Wu, SHANGGUAN Wenbin, LÜ Hui. Research on sliding mode control for nonlinear active suspension system with two degrees of freedom[J]. Journal of Mechanical Engineering, 2020, 56(1): 58-68. doi: 10.3901/JME.2020.01.058
    [26] TAN B H, WU Y, ZHANG N, et al. Dynamic characteristics analysis of an ambulance with hydraulically interconnected suspension system[C]// SAE Technical Paper Series. Pennsylvania: SAE International, 2018: 1-5.
    [27] 汪若尘,叶青,孙泽宇,等. 液压互联ISD悬架系统模式切换研究[J]. 机械工程学报,2017,53(6): 110-115. doi: 10.3901/JME.2017.06.110

    WANG Ruochen, YE Qing, SUN Zeyu, et al. Study of mode switch of the hydraulically interconnected inerter-spring-damper suspension system[J]. Journal of Mechanical Engineering, 2017, 53(6): 110-115. doi: 10.3901/JME.2017.06.110
    [28] ZHANG X L, LIU J C, NIE J M, et al. Simulation analysis and experiment research on hydro-pneumatic ISD suspension[J]. Shock and Vibration, 2021, 2021(1): 2095350.1-209535.14.
    [29] MARTINI A, BELLANI G, et al. Numerical assessment of a new hydro-pneumatic suspension system for motorcycles[J]. International Journal of Automotive and Mechanical Engineering, 2018, 15(2): 5308-5325. doi: 10.15282/ijame.15.2.2018.12.0409
    [30] 张小江,闫振华. 准零刚度油气悬架系统设计与分析[J]. 华南理工大学学报(自然科学版),2020,48(11): 55-63,79.

    ZHANG Xiaojiang, YAN Zhenhua. Design and analysis of quasi-zero stiffness hydropneumatic suspension system[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(11): 55-63,79.
    [31] 田文朋,窦建明,徐信芯. 七桥油气悬架耦连方案对车身姿态的影响[J]. 中国机械工程,2020,31(19): 2371-2378,2387.

    TIAN Wenpeng, DOU Jianming, XU Xinxin. Effects of seven-axle HPS coupling scheme on vehicle body attitude[J]. China Mechanical Engineering, 2020, 31(19): 2371-2378,2387.
    [32] LUO R, LIU C D. Dynamics simulation of the high-speed train using interconnected hydro-pneumatic suspension as a self-steering system[J]. Vehicle System Dynamics, 2022, 60(6): 2055-2074. doi: 10.1080/00423114.2021.1892156
    [33] YANG F, DU Y F, LI W, et al. Innovative design method of hydro-pneumatic suspension for large high-clearance sprayer based on improved NSGA-Ⅱ algorithm[J]. Agriculture, 2023, 13(5): 1071.1-1071.27. doi: 10.3390/agriculture13051071
    [34] ZHOU Q, GUO X X, XU L, et al. Simulation based evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for off-highway vehicles[C]// SAE Technical Paper Series. Pennsylvania: SAE International, 2015: 1-1494.
    [35] ZOU J Y, GUO X X, ABDELKAREEM M A A, et al. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers[J]. Mechanical Systems and Signal Processing, 2019, 127: 345-369. doi: 10.1016/j.ymssp.2019.02.047
    [36] GUO S J, CHEN L, WANG X K, et al. Hydraulic integrated interconnected regenerative suspension: modeling and characteristics analysis[J]. Micromachines, 2021, 12(7): 733.1-733.22. doi: 10.3390/mi12070733
    [37] 赵敬凯,谷正气,张沙,等. 矿用自卸车油气悬架力学特性研究与优化[J]. 机械工程学报,2015,51(10): 112-118,128. doi: 10.3901/JME.2015.10.112

    ZHAO Jingkai, GU Zhengqi, ZHANG Sha, et al. Research and optimization on the mechanical property of mining dump truck’s hydro-pneumatic suspension[J]. Journal of Mechanical Engineering, 2015, 51(10): 112-118,128. doi: 10.3901/JME.2015.10.112
    [38] 张军伟. 多轴重型车辆互连式油气悬架系统特性研究[D]. 北京:北京理工大学,2015.
    [39] ZHANG J W, CHEN S Z, ZHAO Y Z, et al. Research on modeling of hydropneumatic suspension based on fractional order[J]. Mathematical Problems in Engineering, 2015, 2015: 920279.1-920279.11.
    [40] CHEN Y J, HUANG L, XU L, et al. Modelling and simulation calculation of fixed-cylinder hydro-pneumatic suspension[J]. Journal of Physics: Conference Series, 2021, 1965(1): 012048.1-012048.5.
    [41] VAN DER WESTHUIZEN S F, SCHALK ELS P. Comparison of different gas models to calculate the spring force of a hydropneumatic suspension[J]. Journal of Terramechanics, 2015, 57: 41-59. doi: 10.1016/j.jterra.2014.11.002
    [42] LIN D Z, YANG F, LI R H. Experimental modelling and analysis of compact hydro-pneumatic interconnected suspension strut considering pneumatic thermodynamics and hydraulic inertial properties[J]. Mechanical Systems and Signal Processing, 2022, 172: 108988.1-108988.13.
    [43] LI Z X, WANG Y C, DU H, et al. Modelling and analysis of full-vehicle hydro-pneumatic suspension system considering real-gas polytropic process[J]. Mechanical Systems and Signal Processing, 2022, 165: 108406.1-108406.21.
    [44] YIN Y M, RAKHEJA S, YANG J, et al. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion[J]. Mechanical Systems and Signal Processing, 2018, 106: 319-333. doi: 10.1016/j.ymssp.2017.12.040
    [45] TAN B H, LIN X, ZHANG B J, et al. Nonlinear modeling and experimental characterization of hydraulically interconnected suspension with shim pack and gas-oil emulsion[J]. Mechanical Systems and Signal Processing, 2023, 182: 109554.1-109554.18.
    [46] 索雪峰,焦生杰,张泽宇,等. 活塞导向长度对油气悬架减振性能的影响[J]. 液压与气动,2022,46(3): 120-127.

    SUO Xuefeng, JIAO Shengjie, ZHANG Zeyu, et al. Effect of hydro-pneumatic suspension piston guide length on its vibration reduction performance[J]. Chinese Hydraulics & Pneumatics, 2022, 46(3): 120-127.
    [47] LIN D Z, YANG F, LI R H, et al. The dynamic analysis-effect of orifice- of roll-coupled compacted hydro-pneumatic suspension subjected to typical based excitation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(10/11): 2448-2458.
    [48] WANG Y L, WU T L, RAN Z H, et al. Modeling analysis and experiments of a novel hydro-pneumatic suspension with piezoelectric energy harvester[J]. Smart Materials and Structures, 2023, 32(7): 075005.1-075005.16.
    [49] KÜÇÜK K, YURT H K, ARıKAN K B, et al. Modelling and optimisation of an 8 × 8 heavy duty vehicle’s hydro-pneumatic suspension system[J]. International Journal of Vehicle Design, 2016, 71(1/2/3/4): 122-138. doi: 10.1504/IJVD.2016.078772
    [50] KWON K, SEO M, KIM H, et al. Multi-objective optimisation of hydro-pneumatic suspension with gas-oil emulsion for heavy-duty vehicles[J]. Vehicle System Dynamics, 2020, 58(7): 1146-1165. doi: 10.1080/00423114.2019.1609050
    [51] 周晨. 应急救援车辆油气悬架与主动前轮转向系统控制策略研究[D]. 长春:吉林大学,2021.
    [52] ZHAO H Y, WANG G Q, LV W D, et al. Optimization of hydropneumatic suspension for articulated wheel loader based on Kriging model and particle swarm algorithm[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-10.
    [53] ZHAO Y Q, XU H, DENG Y J, et al. Multi-objective optimization for ride comfort of hydro-pneumatic suspension vehicles with mechanical elastic wheel[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(11): 2714-2728. doi: 10.1177/0954407018804909
    [54] XU H, ZHAO Y Q, YE C, et al. Integrated optimization for mechanical elastic wheel and suspension based on an improved artificial fish swarm algorithm[J]. Advances in Engineering Software, 2019, 137: 102722.1-102722.8.
    [55] TAN B H, WU Y, ZHANG N, et al. Improvement of ride quality for patient lying in ambulance with a new hydro-pneumatic suspension[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-20.
    [56] TIAN W P, DOU J M, XU X X. Modelling and characteristics of hybrid coupling hydro-pneumatic suspension for a seven-axle vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(7): 1892-1901. doi: 10.1177/0954407020983212
    [57] YANG L, WANG R C, SUN Z Y, et al. Multi-objective optimization design of hydropneumatic suspension with gas-oil emulsion for ride comfort and handling stability of an articulated dumper truck[J]. Engineering Optimization, 2023, 55(2): 291-310. doi: 10.1080/0305215X.2021.2002314
    [58] 杜甫,陈轶杰,万义强,等. 惯容式油气悬架力学建模和试验研究[J]. 汽车工程,2021,43(12): 1817-1824.

    DU Fu, CHEN Yijie, WAN Yiqiang, et al. Mechanical modeling and experimental study of inerter-based oil-gas suspension[J]. Automotive Engineering, 2021, 43(12): 1817-1824.
    [59] MOAAZ A O, ALI A S, GHAZALY N M, et al. Performance evaluation of semi-active suspension for passenger vehicle through skyhook, groundhook and hybrid control strategies[J]. International Journal of Vehicle Structures and Systems, 2022, 14(5): 572-579.
    [60] SOLOMON U, PADMANABHAN C. Semi-active hydro-gas suspension system for a tracked vehicle[J]. Journal of Terramechanics, 2011, 48(3): 225-239. doi: 10.1016/j.jterra.2011.01.002
    [61] 么鸣涛,曹锋,阙瑞义,等. 考虑汽车悬架动挠度的模糊PID控制[J]. 北京理工大学学报,2016,36(9): 929-934.

    YAO Mingtao, CAO Feng, QUE Ruiyi, et al. Fuzzy PID control considering vehicular suspension dynamic deflection[J]. Transactions of Beijing Institute of Technology, 2016, 36(9): 929-934.
    [62] 刘涛. 车身姿态补偿半主动控制[J]. 重庆理工大学学报(自然科学),2020,34(7): 63-74.

    LIU Tao. Semi-active control for body attitude compensation[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(7): 63-74.
    [63] 孙建民,刘祥,赵国浩,等. 模糊反馈增量式比例积分微分油气悬架控制[J]. 科学技术与工程,2021,21(34): 14814-14820.

    SUN Jianmin, LIU Xiang, ZHAO Guohao, et al. Incremental proportional-integral-derivative hydro pneumatic suspension control based on fuzzy feedback[J]. Science Technology and Engineering, 2021, 21(34): 14814-14820.
    [64] 孙东,汪若尘,丁仁凯,等. 基于灰狼算法的矿用自卸车油气悬架半主动控制研究[J]. 中国机械工程,2023,34(4): 490-497.

    SUN Dong, WANG Ruochen, DING Renkai, et al. Research on semi-active control of hydro-pneumatic suspension for mining dump truck based on grey wolf algorithm[J]. China Mechanical Engineering, 2023, 34(4): 490-497.
    [65] SIM K, LEE H, YOON J W, et al. Effectiveness evaluation of hydro-pneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors[J]. Journal of Terramechanics, 2017, 69: 23-32. doi: 10.1016/j.jterra.2016.10.003
    [66] ZHU Z H, WANG R C, YANG L, et al. Modelling and control of a semi-active dual-chamber hydro-pneumatic inerter-based suspension system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(9): 2355-2370. doi: 10.1177/0954407021990916
    [67] WANG R C, LIU W, DING R K, et al. Switching control of semi-active suspension based on road profile estimation[J]. Vehicle System Dynamics, 2022, 60(6): 1972-1992. doi: 10.1080/00423114.2021.1889621
    [68] 汪少华,翟旭辉,孙晓强,等. 车辆刚度阻尼多级可调式油气悬架系统分析及控制研究[J]. 振动与冲击,2022,41(12): 168-177.

    WANG Shaohua, ZHAI Xuhui, SUN Xiaoqiang, et al. Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics[J]. Journal of Vibration and Shock, 2022, 41(12): 168-177.
    [69] ZHANG Y X, ZHANG X J, ZHAN M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles[J]. Journal of the Franklin Institute, 2015, 352(2): 485-499. doi: 10.1016/j.jfranklin.2014.06.005
    [70] 周创辉,文桂林. 基于改进型天棚阻尼控制算法的馈能式半主动油气悬架系统[J]. 振动与冲击,2018,37(14): 168-174,207.

    ZHOU Chuanghui, WEN Guilin. Hydraulic-electrical energy regenerative semi-active hydro-pneumatic suspension system based on a modified skyhook damping control algorithm[J]. Journal of Vibration and Shock, 2018, 37(14): 168-174,207.
    [71] AWAD M N, SOKAR M I, ABDRABBO S M, et al. Hydro-pneumatic energy harvesting suspension system using a PSO based PID controller[J]. SAE International Journal of Commercial Vehicles, 2018, 11(4): 223-234. doi: 10.4271/02-11-04-0018
    [72] YANG L, WANG R C, DING R K, et al. Investigation on the dynamic performance of a new semi-active hydro-pneumatic inerter-based suspension system with MPC control strategy[J]. Mechanical Systems and Signal Processing, 2021, 154: 107569.1-107569.21. doi: 10.1016/j.ymssp.2020.107569
    [73] SUSATIO Y, OKTAVIANA L, RIZKI N K, et al. Design of half-car active suspension system for passenger riding comfort[J]. Journal of Physics: Conference Series, 2018, 1075(1): 012030.1-012030.7. doi: 10.1088/1742-6596/1075/1/012030
    [74] 张杰. 某无人战车主动油气悬架设计及控制的研究[D]. 南京:南京理工大学,2018.
    [75] SAGLAM F, UNLUSOY Y S. Adaptive ride comfort and attitude control of vehicles equipped with active hydro-pneumatic suspension[J]. International Journal of Vehicle Design, 2016, 71(1/2/3/4): 31-35. doi: 10.1504/IJVD.2016.078764
    [76] QIAO C F, WEN H J, LIU X Y, et al. Damping control and experiment on active hydro-pneumatic suspension of sprayer based on genetic algorithm optimization[J]. Frontiers in Neurorobotics, 2021, 15: 707390.1-707390.17.
    [77] NGUYEN D N, NGUYEN T A, DANG N D. A novel sliding mode control algorithm for an active suspension system considering with the hydraulic actuator[J]. Latin American Journal of Solids and Structures, 2022, 19(1): 1-16.
    [78] OZER H O, HACIOGLU Y, YAGIZ N. High order sliding mode control with estimation for vehicle active suspensions[J]. Transactions of the Institute of Measurement and Control, 2018, 40(5): 1457-1470. doi: 10.1177/0142331216685394
    [79] WANG D Z, ZHAO D X, GONG M D, et al. Nonlinear predictive sliding mode control for active suspension system[J]. Shock and Vibration, 2018, 2018(1): 819405.1-819405.10.
    [80] HUANG Y B, NA J, WU X, et al. Approximation-free control for vehicle active suspensions with hydraulic actuator[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7258-7267. doi: 10.1109/TIE.2018.2798564
    [81] CHEN G P, JIANG Y, TANG Y J, et al. Revised adaptive active disturbance rejection sliding mode control strategy for vertical stability of active hydro-pneumatic suspension[J]. ISA Transactions, 2023, 132: 490-507. doi: 10.1016/j.isatra.2022.06.008
    [82] ZHOU C, LIU X H, CHEN W, et al. Optimal sliding mode control for an active suspension system based on a genetic algorithm[J]. Algorithms, 2018, 11(12): 205.1-205.16. doi: 10.3390/a11120205
    [83] WEI S W, SU X Y. Optimization of the new index reaching law of the active suspension sliding mode controller based on the cuckoo search algorithm[J]. Complexity, 2021, 2021(1): 1-10.
    [84] RIOFRIO A, SANZ S, BOADA M J L, et al. A LQR-based controller with estimation of road bank for improving vehicle lateral and rollover stability via active suspension[J]. Sensors, 2017, 17(10): 2318.1-2318.20.
    [85] 曹玥. 轮式装载机油气悬架参数优化及主动控制[D]. 长春:吉林大学,2018.
    [86] WANG S, LU Z, LIU X H, et al. Active control of hydropneumatic suspension parameters of wheel loaders based on road condition identification[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-23.
    [87] SATHISHKUMAR P, WANG R C, YANG L, et al. Trajectory control for tire burst vehicle using the standalone and roll interconnected active suspensions with safety-comfort control strategy[J]. Mechanical Systems and Signal Processing, 2020, 142: 106776.1-106776.18.
    [88] ZHOU C, LIU X H, XU F X, et al. Sliding Mode Switch Control of Adjustable Hydro-Pneumatic Suspension based on Parallel Adaptive Clonal Selection Algorithm[J]. Applied Sciences, 2020, 10(5): 1852.1-1852.30.
    [89] GAO X, CHANG Y K, CAI T, et al. Analysis of suspension control strategy of wheel-track composite amphibious vehicle based on AMESim-simulink[J]. Journal of Physics: Conference Series, 2022, 2417(1): 012033.1-012033.7.
    [90] GUO Q H, ZHAO D X, ZHAO X L, et al. Active suspension control strategy of multi-axle emergency rescue vehicle based on inertial measurement unit[J]. Sensors, 2021, 21(20): 6877.1-6877.26.
    [91] ZHU J X, ZHAO D X, LIU S, et al. Integrated control of spray system and active suspension systems based on model-assisted active disturbance rejection control algorithm[J]. Mathematics, 2022, 10(18): 3391.1-3391.17.
    [92] SATHISHKUMAR P, WANG R C, YANG L, et al. Energy harvesting approach to utilize the dissipated energy during hydraulic active suspension operation with comfort oriented control scheme[J]. Energy, 2021, 224: 120124.1-120124.15.
    [93] XU F X, ZHOU C, LIU X H, et al. GRNN inverse system based decoupling control strategy for active front steering and hydro-pneumatic suspension systems of emergency rescue vehicle[J]. Mechanical Systems and Signal Processing, 2022, 167: 108595.1-108595.15.
    [94] 米承继,谷正气,伍文广,等. 基于参数辨识的矿用自卸车平顺性优化[J]. 机械工程学报,2012,48(6): 109-115. doi: 10.3901/JME.2012.06.109

    MI Chengji, GU Zhengqi, WU Wenguang, et al. Mining dump truck ride optimization based on parameter identification[J]. Journal of Mechanical Engineering, 2012, 48(6): 109-115. doi: 10.3901/JME.2012.06.109
    [95] 刘大维,蒋荣超,朱龙龙,等. 基于遗传算法的路面有理函数功率谱密度参数识别[J]. 农业工程学报,2012,28(8): 128-133. doi: 10.3969/j.issn.1002-6819.2012.08.020

    LIU Dawei, JIANG Rongchao, ZHU Longlong, et al. Parameters identification of rational function power spectral density of pavement based on genetic algorithms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 128-133. doi: 10.3969/j.issn.1002-6819.2012.08.020
    [96] 朱一帆,谷正气,张沙. 基于辨识路面的矿用自卸车平顺性优化[J]. 振动与冲击,2015,34(13): 24-30.

    ZHU Yifan, GU Zhengqi, ZHANG Sha. Mining dump truck’s ride comfort optimization based on road surface identification[J]. Journal of Vibration and Shock, 2015, 34(13): 24-30.
    [97] LIU W, WANG R C, DING R K, et al. On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration[J]. Mechanical Systems and Signal Processing, 2020, 135: 106370.1-106370.17. doi: 10.1016/j.ymssp.2019.106370
    [98] 李以农,朱哲葳,郑玲,等. 基于路面识别的主动馈能悬架多目标控制与优化[J]. 交通运输工程学报,2021,21(2): 129-137.

    LI Yinong, ZHU Zhewei, ZHENG Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 129-137.
    [99] WANG L F, ZHANG N, DU H P. Real-time identification of vehicle motion-modes using neural networks[J]. Mechanical Systems and Signal Processing, 2015, 50/51: 632-645. doi: 10.1016/j.ymssp.2014.05.043
    [100] ZHENG E L, ZHONG X Y, ZHU R, et al. Investigation into the vibration characteristics of agricultural wheeled tractor-implement system with hydro-pneumatic suspension on the front axle[J]. Biosystems Engineering, 2019, 186: 14-33. doi: 10.1016/j.biosystemseng.2019.05.004
    [101] ALI D, FRIMPONG S. Artificial intelligence models for predicting the performance of hydro-pneumatic suspension struts in large capacity dump trucks[J]. International Journal of Industrial Ergonomics, 2018, 67: 283-295. doi: 10.1016/j.ergon.2018.06.005
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-09-05
  • 网络出版日期:  2025-02-09

目录

    /

    返回文章
    返回