• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于纵向通风与空气幕协同作用下的分岔隧道最高温度

李涛 杨云萍 米春 陈政全 王春翔 陈龙飞 张玉春

李涛, 杨云萍, 米春, 陈政全, 王春翔, 陈龙飞, 张玉春. 基于纵向通风与空气幕协同作用下的分岔隧道最高温度[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230157
引用本文: 李涛, 杨云萍, 米春, 陈政全, 王春翔, 陈龙飞, 张玉春. 基于纵向通风与空气幕协同作用下的分岔隧道最高温度[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230157
LI Tao, YANG Yunping, MI Chun, CHEN Zhengquan, WANG Chunxiang, CHEN Longfei, ZHANG Yuchun. Maximum Temperature in Bifurcated Tunnel Based on Synergistic Effect of Longitudinal Ventilation and Air Curtain[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230157
Citation: LI Tao, YANG Yunping, MI Chun, CHEN Zhengquan, WANG Chunxiang, CHEN Longfei, ZHANG Yuchun. Maximum Temperature in Bifurcated Tunnel Based on Synergistic Effect of Longitudinal Ventilation and Air Curtain[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230157

基于纵向通风与空气幕协同作用下的分岔隧道最高温度

doi: 10.3969/j.issn.0258-2724.20230157
基金项目: 国家重点研发计划项目(2022YFC3801104);国家自然科学基金项目(52378412);四川省科技计划项目(2023YFS0421)
详细信息
    作者简介:

    李涛(1983—),男,高级工程师,博士,研究方向为隧道火灾,E-mail:taoli@swjtu.edu.cn

  • 中图分类号: x932

Maximum Temperature in Bifurcated Tunnel Based on Synergistic Effect of Longitudinal Ventilation and Air Curtain

  • 摘要:

    为研究城市分岔隧道中纵向通风和空气幕的协同作用对控制隧道火灾烟气的影响,基于1:10小尺寸分岔隧道火灾实验,综合考虑纵向通风、空气幕射流速度、角度和厚度等变量,对纵向通风和空气幕协同作用下的分岔隧道沿程温度和最高温度进行分析. 首先,通过57组小尺寸隧道火灾实验,分析空气幕的防烟隔热效应;然后,根据隧道火灾顶棚最大温升的无量纲经验相关公式,在固定热释放速率47.9 kW下,构建空气幕和纵向通风协同作用下的最高温升模型;最后,将不同工况下的最大温升实验值与所构建的最高温升理论模型预测值进行对比验证. 研究表明:空气幕可以有效地帮助纵向通风降低主隧道温度,最高可降低420 ℃,同时可有效防止烟气进入分岔隧道;而当空气幕射流速度较小时,纵向风速的增加,能有效防止烟气在分岔口积聚,提高空气幕对烟气的阻隔效率,隧道分岔点处烟气温度最高可降低170 ℃;最高温升理论模型与实验结果之间的误差小于10%.

     

  • 图 1  城市隧道分岔段火灾实验平台

    Figure 1.  Experimental platform for fires in urban bifurcated tunnels

    图 2  热电偶排列示意

    Figure 2.  Thermocouple arrangement

    图 3  不同纵向通风下主隧道温度场分布

    Figure 3.  Temperature field distribution in main tunnel with different longitudinal ventilation

    图 4  不同纵向通风下分岔隧道温度分布

    Figure 4.  Temperature distribution in bifurcated tunnel with different longitudinal ventilation

    图 5  不同空气幕射流速度下$ v^{2} / (g H) $与$ \Delta T_{\max } / T_{\infty} $之间的关系

    Figure 5.  Relationship between $ v^{2} / (g H) $ and $ \Delta T_{\max } / T_{\infty} $at different jet velocities of air curtain

    图 6  $ {v_{{\mathrm{air}}}}/{(gH)^{1/2}} $与系数mn之间的关系

    Figure 6.  Relationship between$ {v_{{\mathrm{air}}}}/{(gH)^{1/2}} $and coefficients m and n

    图 7  不同空气幕射流速度下无量纲预测与实验的最大温升对比

    Figure 7.  Comparison of dimensionless predicted and experimental maximum temperature rise at different jet velocities of air curtain

    图 8  不同空气幕角度下$ {{{v^2}} \mathord{\left/ {\vphantom {{{v^2}} {(gH)}}} \right. } {(gH)}} $与$ {{\Delta {T_{\max }}} \mathord{\left/ {\vphantom {{\Delta {T_{\max }}} {{T_\infty }}}} \right. } {{T_\infty }}} $的关系

    Figure 8.  Relationship between $ v^{2} / ({gH}) $and $ \Delta T_{\max } / T_{\infty} $at different angles of air curtain

    图 9  sin A与系数αβ之间的关系

    Figure 9.  Relationship between $ SinA $ and coefficients α and β

    图 10  不同空气幕角度下无量纲预测与实验的最大温升对比

    Figure 10.  Comparison of dimensionless predicted and experimental maximum temperature rise at different angles of air curtain

    图 11  不同空气幕厚度下$ v/{(gH)^{1/2}} $与$ {{\Delta {T_{\max }}} \mathord{\left/ {\vphantom {{\Delta {T_{\max }}} {{T_\infty }}}} \right. } {{T_\infty }}} $之间的关系

    Figure 11.  Relationship between $ v/{(gH)^{1/2}} $ and $ \Delta T_{\max } / T_{\infty} $at different angles of air curtain

    图 12  $ T/H $与系数abc之间的关系

    Figure 12.  Relationship between T/H and coefficients a, b, and c

    图 13  不同空气幕喷射宽度下无量纲预测与实验的最大温升对比

    Figure 13.  Comparison of dimensionless predicted and experimental maximum temperature rise at different jet widths of air curtain

    表  1  实验工况表

    Table  1.   Experimental conditions

    工况 HRR/kW 纵向通风/(m•s−1 空气幕风速/(m•s−1 角度/(°) 厚度/m
    1~15 15.9,47.9,77.7 0.4,0.8,1.2,1.6,2.0 1.0 0 0.15
    16~33 47.9 0.4,0.8,1.2 1.5,2.0,2.5,3.0,3.5,4.0 0 0.15
    34~51 47.9 0.4,0.8,1.2 3.5 −45,−30,−15,15,30,45 0.15
    52~57 47.9 0.4,0.8,1.2 3.5 30 0.05,0.10
    下载: 导出CSV
  • [1] LI Y Z, INGASON H. Overview of research on fire safety in underground road and railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 568-589. doi: 10.1016/j.tust.2018.08.013
    [2] LI Y Z, INGASON H. Editorial: tunnel fire safety[J]. Fire Safety Journal, 2018, 97: 85-86. doi: 10.1016/j.firesaf.2018.03.006
    [3] 谢永亮,吕娜. 纵向通风作用下隧道内氢泄漏爆炸隐患分析[J]. 西南交通大学学报,2024,59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222

    XIE Yongliang, LU Na. Explosion hazard analysis of tunnel leaked hydrogen in the tunnel under longitudinal ventilation[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
    [4] 林鹏,王国元,司有亮,等. 隧道火灾排烟口位置对排烟效率的影响[J]. 西南交通大学学报,2019,54(5): 1055-1062,1112.

    LIN Peng, WANG Guoyuan, SI Youliang, et al. Influence of vent location on efficiency of smoke extraction in tunnel fire[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1055-1062,1112.
    [5] ALPERT R L. Calculation of response time of ceiling-mounted fire detectors[J]. Fire Technology, 1972, 8(3): 181-195. doi: 10.1007/BF02590543
    [6] KURIOKA H, OKA Y, SATOH H, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal, 2003, 38(4): 319-340. doi: 10.1016/S0379-7112(02)00089-9
    [7] LI Y Z, LEI B, INGASON H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires[J]. Fire Safety Journal, 2011, 46(4): 204-210. doi: 10.1016/j.firesaf.2011.02.002
    [8] 王钟宽,粟萌萌,黄欣,等. 不同坡度隧道火灾自熄现象试验研究[J]. 中国安全科学学报,2021,31(1): 186-191.

    WANG Zhongkuan, SU Mengmeng, HUANG Xin, et al. Experimental study on fire self-extinction phenomenon in tunnel with different slopes[J]. China Safety Science Journal, 2021, 31(1): 186-191.
    [9] 姜学鹏,陈欣格,郭昆. 侧部点式排烟隧道火灾临界风速研究[J]. 中国安全科学学报,2021,31(3): 105-111.

    JIANG Xuepeng, CHEN Xinge, GUO Kun. Study on critical velocity of lateral point smoke extraction tunnel fire[J]. China Safety Science Journal, 2021, 31(3): 105-111.
    [10] YANG D, LIU Y L, ZHAO C M, et al. Multiple steady states of fire smoke transport in a multi-branch tunnel: theoretical and numerical studies[J]. Tunnelling and Underground Space Technology, 2017, 61: 189-197. doi: 10.1016/j.tust.2016.10.009
    [11] HUANG Y B, LI Y F, LI J M, et al. Experimental investigation on maximum gas temperature beneath the ceiling in a branched tunnel fire[J]. International Journal of Thermal Sciences, 2019, 145: 105997.1-105997.9.
    [12] ZHANG Y L, CHEN C K, LEI P, et al. A study on buoyancy-driven maximum ceiling gas temperature of T-shaped bifurcated channel-like structure in fire environment[J]. International Journal of Thermal Sciences, 2022, 171: 107213.1-107213.15.
    [13] SHU C, WANG L L, ZHANG C, et al. Air curtain effectiveness rating based on aerodynamics[J]. Building and Environment, 2020, 169: 106582.1-106582.11.
    [14] YU L X, LIU F, BEJI T, et al. Experimental study of the effectiveness of air curtains of variable width and injection angle to block fire-induced smoke in a tunnel configuration[J]. International Journal of Thermal Sciences, 2018, 134: 13-26. doi: 10.1016/j.ijthermalsci.2018.07.044
    [15] LI X C, ZHAO X L, JIANG Y F, et al. Air curtain dust-collecting technology: influence factors for air curtain performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104780.1-104780.11.
    [16] LI T, YANG Y P, LI X S, et al. Experimental study of air curtain thermal insulation efficiency and maximum temperature rise beneath the ceiling under longitudinal ventilation in bifurcated tunnels[J]. Tunnelling and Underground Space Technology, 2023, 137: 105112.1-105112.10.
    [17] LI T, YANG Z Y, LI X S, et al. Experimental study on fire temperature distribution based on air curtain separation effect in a reduced-scale bifurcation tunnel[J]. Tunnelling and Underground Space Technology, 2022, 126: 104548.1-104548.15.
    [18] 纪杰,钟委,高子鹤. 狭长空间烟气流动特性及控制方法[M]. 北京: 科学出版社,2015.
    [19] 李小松. 火源两侧受限条件下隧道强羽流火灾特征规律研究[D]. 成都: 西南交通大学,2022.
    [20] CHEN L F, DU S, ZHANG Y C, et al. Experimental study on the maximum temperature and flame extension length driven by strong plume in a longitudinal ventilated tunnel[J]. Experimental Thermal and Fluid Science, 2019, 101: 296-303. doi: 10.1016/j.expthermflusci.2018.10.022
    [21] 陈贻来. 单个小汽车火灾热释放速率影响因素分析[J]. 消防科学与技术,2010,29(5): 379-382. doi: 10.3969/j.issn.1009-0029.2010.05.006

    CHEN Yilai. Analysis on the factors influencing the heat release rate of vehicle fire accident[J]. Fire Science and Technology, 2010, 29(5): 379-382. doi: 10.3969/j.issn.1009-0029.2010.05.006
    [22] 夏永旭,韩兴博,姚毅. 隧道内大巴车火灾热释放率及温度场研究[J]. 现代隧道技术,2018,55(3): 153-159.

    XIA Yongxu, HAN Xingbo, YAO Yi. Heat release rate and temperature field of a bus on fire[J]. Modern Tunnelling Technology, 2018, 55(3): 153-159.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-10-25
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回