• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于AMESim的矿用自卸车悬架系统平顺性分析

刘启航 冯汉队 刘申 李贝贝 刘秀梅

刘启航, 冯汉队, 刘申, 李贝贝, 刘秀梅. 基于AMESim的矿用自卸车悬架系统平顺性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230135
引用本文: 刘启航, 冯汉队, 刘申, 李贝贝, 刘秀梅. 基于AMESim的矿用自卸车悬架系统平顺性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230135
LIU Qihang, FENG Handui, LIU Shen, LI Beibei, LIU Xiumei. Ride Comfort Analysis of Suspension System of Mining Dump Truck Based on AMESim[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230135
Citation: LIU Qihang, FENG Handui, LIU Shen, LI Beibei, LIU Xiumei. Ride Comfort Analysis of Suspension System of Mining Dump Truck Based on AMESim[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230135

基于AMESim的矿用自卸车悬架系统平顺性分析

doi: 10.3969/j.issn.0258-2724.20230135
基金项目: 国家自然科学基金项目(51875559)
详细信息
    作者简介:

    刘启航(1995—),男,博士研究生,研究方向为流体传动与控制,E-mail:liuqhcumt@163.com

    通讯作者:

    刘秀梅(1982—),女,教授,研究方向为流体传动及控制,E-mail:liuxm@cumt.edu.cn

  • 中图分类号: TH137

Ride Comfort Analysis of Suspension System of Mining Dump Truck Based on AMESim

  • 摘要:

    矿用自卸车主要用于小型矿山运输,常在道路条件恶劣、超载严重等工况下工作. 油气悬架因其刚度和阻尼的非线性特性,能较好适应外载荷激励变化,在大型工程车辆中广泛应用. 以徐工生产的XDR80t型矿用自卸车为研究对象,针对采集到的轮胎质心加速度以及车身加速度数据,利用频域积分的方法求解活塞杆相对位移量数据. 采用AMESim仿真平台建立机液联合仿真模型,研究了不同悬架结构参数下车身振动特性的变化趋势. 研究发现:阻尼孔直径对于车身振动状态影响较为明显. 当阻尼孔直径由8 mm变化至14 mm时,加速度峰值减小约49.27%,均方根值RMS减少约49.42%,但相应的俯仰角却呈增加趋势;随着缸径/杆径由180/150 mm增加至200/170 mm,加速度峰值和RMS分别降低16.84%与18.62%;当预充压力从1.5 MPa增加至2.25 MPa时,加速度峰值及RMS均方根值分别减小27.67%及27.49%,俯仰角也减小.

     

  • 图 1  加速度传感器安装位置

    Figure 1.  Installation position of acceleration sensor

    图 2  典型加速度信号频域处理

    Figure 2.  Frequency domain processing of typical acceleration signals

    图 3  求解结果验证

    Figure 3.  Result verification

    图 4  误差分析

    Figure 4.  Error analysis

    图 5  4自由度互联悬架车辆模型

    Figure 5.  Vehicle model with four degrees of freedom interconnected suspension

    图 6  AMESim中后桥油气悬架仿真模型

    Figure 6.  AMESim simulation model of middle and rear axle hydro-pneumatic suspension

    图 7  二维机械结构模型

    Figure 7.  Two-dimensional mechanical structure model

    图 8  不同阻尼孔直径加速度对比曲线

    Figure 8.  Acceleration comparison curve of different damping hole diameters

    图 9  不同缸径/杆径加速度对比曲线

    Figure 9.  Acceleration comparison curve of different cylinder/rod diameters

    图 10  不同预充压力加速度对比曲线

    Figure 10.  Acceleration comparison curve of different pre-charge pressures

    图 11  车身振动俯仰角示意

    Figure 11.  Pitch angle of body vibration

    图 12  不同参数条件下车身振动俯仰角变化峰值

    Figure 12.  Variation peak of pitch angle of body vibration under different parameters

    表  1  二维机械模型关键节点坐标

    Table  1.   Key node coordinates of two-dimensional mechanical model

    序号 节点含义 坐标/m
    1 中油缸-车架铰接点 (−0.875,0.85)
    2 后油缸-车架铰接点 (0.875,0.85)
    3 稳定连杆-车架铰接点 (0,0.15)
    4 中油缸-稳定连杆铰接点 (−0.9,0)
    5 后油缸-稳定连杆铰接点 (0.9,0)
    6 车架质心点 (0,0.567)
    车身转动惯量 4 × 106 kg·m2
    下载: 导出CSV

    表  2  油气悬架基本参数

    Table  2.   Basic parameters of hydro-pneumatic suspension

    变量 取值
    无杆腔直径*/mm 180
    活塞杆直径*/mm 150
    阻尼孔直径*/mm 10
    蓄能器预充压力*/MPa 1.75
    蓄能器体积/L 3.75
    轴距/mm 1750
    货物质量/t 15
    车身质量/t 10
    油液密度/(kg·m−3 850
    下载: 导出CSV
  • [1] 陈卫东. 矿用汽车的基本现状和发展趋势[J]. 中国水泥,2004(9): 70-72. doi: 10.3969/j.issn.1671-8321.2004.09.027

    CHEN Weidong. Basic status and development trend of mining vehicles[J]. China Building Material Equipment, 2004(9): 70-72. doi: 10.3969/j.issn.1671-8321.2004.09.027
    [2] 何淼. TLD110矿用自卸车前油气悬架系统研究[D]. 西安:长安大学,2018.
    [3] 刘志强. 基于主动悬架控制的电动汽车平顺性仿真研究[D]. 秦皇岛:燕山大学,2021.
    [4] BANERJEE S, BALAMURUGAN V, KRISHNAKUMAR R. Ride dynamics mathematical model for a single station representation of tracked vehicle[J]. Journal of Terramechanics, 2014, 53: 47-58. doi: 10.1016/j.jterra.2014.03.003
    [5] SHELKE G D, MITRA A C, VARUDE V R. Validation of simulation and analytical model of nonlinear passive vehicle suspension system for quarter car[J]. Materials Today: Proceedings, 2018, 5(9): 19294-19302. doi: 10.1016/j.matpr.2018.06.288
    [6] KONIECZNY Ł. Damping characteristics of hydropneumatic suspension strut in function of car static load[J]. Journal of Vibroengineering, 2015, 17: 74-81.
    [7] KWON K, SEO M, KIM H, et al. Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles[J]. Vehicle System Dynamics, 2020, 58(7): 1146-1165. doi: 10.1080/00423114.2019.1609050
    [8] 穆晓东. 55吨全地面起重机油气悬架系统设计与分析[D]. 大连:大连理工大学,2015.
    [9] 张清郁. 基于Simulink单气室油气混合式悬架输出特性分析[J]. 机械设计与制造,2023(11): 140-143. doi: 10.3969/j.issn.1001-3997.2023.11.030

    ZHANG Qingyu. Output characteristic analysis of the single chamber hydro-pneumatic suspension based on simulink[J]. Machinery Design & Manufacture, 2023(11): 140-143. doi: 10.3969/j.issn.1001-3997.2023.11.030
    [10] 陶建建. 矿用自卸车悬架系统设计与优化[D]. 长沙:湖南大学,2015.
    [11] 王靖岳,杨芳,王浩天. 两级压力式油气弹簧的非线性建模及其性能分析[J]. 噪声与振动控制,2020,40(4): 27-31,62. doi: 10.3969/j.issn.1006-1355.2020.04.005

    WANG Jingyue, YANG Fang, WANG Haotian. Nonlinear modeling of the double-stage pressure oil-gas spring and its performance analysis[J]. Noise and Vibration Control, 2020, 40(4): 27-31,62. doi: 10.3969/j.issn.1006-1355.2020.04.005
    [12] SHA L, ZHANG H, CHEN G. Research on dynamic characteristics of oil and gas suspension cylinder[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012041.1-012041.8.
    [13] 刘同昊,石运序,曹常贞,等. 不同气室充气容积对油气弹簧动态特性影响分析[J]. 液压与气动,2021,45(9): 82-88. doi: 10.11832/j.issn.1000-4858.2021.09.011

    LIU Tonghao, SHI Yunxu, CAO Changzhen, et al. Analysis of influence of different gas chamber volume on dynamic characteristics of hydro-pneumatic spring[J]. Chinese Hydraulics & Pneumatics, 2021, 45(9): 82-88. doi: 10.11832/j.issn.1000-4858.2021.09.011
    [14] 陈林山. 基于Simulink油气悬架非线性特性影响因素分析[J]. 机床与液压,2017,45(19): 179-184. doi: 10.3969/j.issn.1001-3881.2017.19.038

    CHEN Linshan. Analysis on influence factors of nonlinear characteristics of hydro-pneumatic suspension based on simulink[J]. Machine Tool & Hydraulics, 2017, 45(19): 179-184. doi: 10.3969/j.issn.1001-3881.2017.19.038
    [15] 李阁强,崔国庆,毛波,等. 温升对油气悬架刚度的影响[J]. 液压与气动,2021,45(5): 127-131. doi: 10.11832/j.issn.1000-4858.2021.05.018

    LI Geqiang, CUI Guoqing, MAO Bo, et al. Influence of temperature rise on stiffness of hydro-pneumatic suspension[J]. Chinese Hydraulics & Pneumatics, 2021, 45(5): 127-131. doi: 10.11832/j.issn.1000-4858.2021.05.018
    [16] 王刚锋,刘湘,杜腾,等. 矿用自卸车两级压力式油气悬架特性分析[J]. 液压与气动,2022,46(9): 92-98. doi: 10.11832/j.issn.1000-4858.2022.09.012

    WANG Gangfeng, LIU Xiang, DU Teng, et al. Characteristics analysis of a two-stage pressure hydro-pneumatic suspension for mining dump truck[J]. Chinese Hydraulics & Pneumatics, 2022, 46(9): 92-98. doi: 10.11832/j.issn.1000-4858.2022.09.012
    [17] 索雪峰,焦生杰,张泽宇,等. 活塞导向长度对油气悬架减振性能的影响[J]. 液压与气动,2022,46(3): 120-127. doi: 10.11832/j.issn.1000-4858.2022.03.015

    SUO Xuefeng, JIAO Shengjie, ZHANG Zeyu, et al. Effect of hydro-pneumatic suspension piston guide length on its vibration reduction performance[J]. Chinese Hydraulics & Pneumatics, 2022, 46(3): 120-127. doi: 10.11832/j.issn.1000-4858.2022.03.015
    [18] WU W G, ZHANG S, ZHANG Z Y. Mathematical simulations and on-road experimentations of the vibration energy harvesting from mining dump truck hydro-pneumatic suspension[J]. Shock and Vibration, 2019, 2019: 4814072.1-4814072.15.
    [19] SHAO X X, DU H P, NAGHDY F. Enhanced vehicle handling and ride through anti-pitch anti-roll hydraulically interconnected suspension[C]//SAE Technical Paper Series. Warrendale: SAE International, 2016, 1: 1561-1568.
    [20] 杜恒,魏建华. 基于遗传算法的连通式油气悬架平顺性与道路友好性参数优化[J]. 振动与冲击,2011,30(8): 133-138. doi: 10.3969/j.issn.1000-3835.2011.08.026

    DU Heng, WEI Jianhua. Parameters optimization of interconnected hydro-pneumatic suspension for road comfort and road-friendliness based on genetic algorithm[J]. Journal of Vibration and Shock, 2011, 30(8): 133-138. doi: 10.3969/j.issn.1000-3835.2011.08.026
    [21] CAO D P, RAKHEJA S, SU C Y. Handling and braking analyses of a heavy vehicle with a cross-axle fluidically-coupled suspension[J]. SAE International Journal of Commercial Vehicles, 2008, 1(1): 406-415. doi: 10.4271/2008-01-2672
    [22] 田玲玲,谷正气,李伟平,等. 非线性油气悬架系统平顺性仿真与参数优化设计[J]. 中南大学学报(自然科学版),2011,42(12): 3715-3721.

    TIAN Lingling, GU Zhengqi, LI Weiping, et al. Ride comfort simulation and parameters optimization design of nonlinear hydro-pneumatic suspension system[J]. Journal of Central South University (Science and Technology), 2011, 42(12): 3715-3721.
    [23] 张德军,聂昕. 某电动车前悬架运动学分析与优化[J]. 汽车实用技术,2023,48(3): 1-4.

    ZHANG Dejun, NIE Xin. Kinematics analysis and optimization of front suspension of a electric vehicle[J]. Automobile Applied Technology, 2023, 48(3): 1-4.
    [24] 高荟超. 某战车油气悬架性能分析与优化[D]. 武汉:武汉科技大学,2022.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  96
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-07-09
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回