• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑黏结-滑移效应的UHPC梁钢筋应力计算方法

孙永新 蔺鹏臻 杨子江

孙永新, 蔺鹏臻, 杨子江. 考虑黏结-滑移效应的UHPC梁钢筋应力计算方法[J]. 西南交通大学学报, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130
引用本文: 孙永新, 蔺鹏臻, 杨子江. 考虑黏结-滑移效应的UHPC梁钢筋应力计算方法[J]. 西南交通大学学报, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130
SUN Yongxin, LIN Pengzhen, YANG Zijiang. Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130
Citation: SUN Yongxin, LIN Pengzhen, YANG Zijiang. Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130

考虑黏结-滑移效应的UHPC梁钢筋应力计算方法

doi: 10.3969/j.issn.0258-2724.20230130
基金项目: 国家自然科学基金项目(U1934205)
详细信息
    作者简介:

    孙永新(1989—),男,讲师,博士研究生,研究方向为UHPC桥梁结构设计理论与工程应用,E-mail:syx170007@163.com

    通讯作者:

    蔺鹏臻(1977—),男,教授,博士生导师,研究方向为大跨度桥梁设计理论及建造技术,E-mail:pzhlin@mail.lzjtu.cn

  • 中图分类号: U443.32

Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect

  • 摘要:

    为建立适用于配筋超高性能混凝土(UHPC)梁的钢筋应力计算方法,对6片UHPC-T形截面梁开展四点弯曲试验,研究钢筋应力的变化规律. 从钢筋-UHPC受力平衡与变形协调机理出发,应用微元体建立平衡、变形以及黏结-滑移微分方程,导出能综合反映钢筋与UHPC界面黏结-滑移影响及钢纤维抗拉贡献的钢筋应力计算公式,并通过简化应变不均匀系数与裂缝截面钢筋应力计算,提出便于工程应用的钢筋应力简化公式. 研究表明:单位荷载下钢筋应力的增幅随配筋率的提高而减小,而与钢纤维体积率的变化无关;与普通混凝土梁相比,UHPC梁的钢筋应力在开裂截面处偏小,但其分布在相邻裂缝间的不均匀程度更高;钢筋应力建议公式计算值与本文、既有文献的试验值均吻合良好;钢筋应力简化公式计算值与试验值之比的均值为1.03,变异系数为0.06,表明该简化式可用于UHPC梁的钢筋应力计算.

     

  • 图 1  梁的配筋及截面尺寸

    Figure 1.  Reinforcement and section dimensions of specimens

    图 2  四点抗弯试验

    Figure 2.  Four-point bending test

    图 3  荷载-钢筋应力关系曲线

    Figure 3.  Load-reinforcement stress relationship curves

    图 4  受弯构件开裂后的变形及受力

    Figure 4.  Deformation and stress of bending member after cracking

    图 5  隔离体及微段的应力分布

    Figure 5.  Stress distribution of isolator and micro-segment

    图 6  裂缝截面的应力分布

    Figure 6.  Stress distribution of cracked section

    图 7  平均裂缝间距计算值与实测值的对比

    Figure 7.  Comparison between calculated and measured values of average crack spacing

    图 8  钢筋平均应力的对比曲线

    Figure 8.  Comparison curves of average reinforcement stress

    图 9  计算值与文献实测值的对比

    Figure 9.  Comparison between calculated values and measured values in literature

    图 10  简化计算值与文献实测值的对比

    Figure 10.  Comparison between calculated values of simplified formula and measured values in literature

    表  1  试件的编号与参数

    Table  1.   Number and parameters of specimens

    变量 梁号 Vf/% 纵筋配置 ρs/% c/mm
    标准梁 T1 2 216 1.60 15
    钢纤维
    体积率
    T2 1 216 1.60
    T3 3
    配筋率 T4 2 212 0.89
    T5 220 2.51
    T6 416 3.20
    下载: 导出CSV

    表  2  基本力学指标

    Table  2.   Basic mechanical indicators

    Vf/% fcu/MPa fc/MPa ft/MPa Ec/GPa
    1 121.22 83.72 6.35 41
    2 133.71 89.14 7.84 42
    3 141.53 97.82 9.32 44
    下载: 导出CSV

    表  3  钢筋应力的实测结果

    Table  3.   Measured results of reinforcement stress

    梁号 Fcr/kN Ft/kN σcr/MPa σt/MPa Vm/(MPa•kN−1
    T1 55.24 321.42 37.77 593.75 2.09
    T2 37.27 311.31 32.23 602.22 2.08
    T3 69.72 334.27 44.53 579.63 2.02
    T4 43.43 218.51 41.82 581.70 3.08
    T5 60.67 454.88 48.34 579.06 1.35
    T6 61.14 529.20 39.25 578.51 1.15
    下载: 导出CSV

    表  4  系数nS1的取值

    Table  4.   Values of coefficients n and S1

    梁号 n S1
    T1 0.64 1.10
    T2 0.66 0.90
    T3 0.60 0.99
    T4 0.62 1.17
    T5 0.64 0.95
    T6 0.71 0.87
    下载: 导出CSV
  • [1] SHIRAI K, YIN H, TEO W. Flexural capacity prediction of composite RC members strengthened with UHPC based on existing design models[J]. Structures, 2020, 23: 44-55. doi: 10.1016/j.istruc.2019.09.017
    [2] ELSAYED M, BADAWY S, TAYEH B A, et al. Shear behaviour of ultra-high performance concrete beams with openings[J]. Structures, 2022, 43(6): 546-558.
    [3] WANG J Q, QI J N, TONG T, et al. Static behavior of large stud shear connectors in steel-UHPC composite structures[J]. Engineering Structures, 2019, 178: 534-542. doi: 10.1016/j.engstruct.2018.07.058
    [4] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2010.
    [5] 邱明红,邵旭东,胡伟业,等. 钢筋UHPC受弯构件裂缝宽度计算方法研究[J]. 土木工程学报,2020,53(10): 89-98,119.

    QIU Minghong, SHAO Xudong, HU Weiye, et al. Calculation method for crack width of reinforced UHPC flexural components[J]. China Civil Engineering Journal, 2020, 53(10): 89-98,119.
    [6] 邱明红,邵旭东,胡伟业,等. 钢筋UHPC矩形截面受弯构件的钢筋应力简化计算[J]. 中国公路学报,2021,34(8): 106-117.

    QIU Minghong, SHAO Xudong, HU Weiye, et al. Simplified calculation of reinforcement stress in reinforced UHPC bending members with rectangular sections[J]. China Journal of Highway and Transport, 2021, 34(8): 106-117.
    [7] 郑文忠,李莉,卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报,2011,32(6): 125-134.

    ZHENG Wenzhong, LI Li, LU Shanshan. Experimental research on mechanical performance of normal section of reinforced reactive powder concrete beam[J]. Journal of Building Structures, 2011, 32(6): 125-134.
    [8] 赵国藩,王清湘. 钢筋混凝土构件裂缝宽度分析的应力图形和计算模式[J]. 大连工学院学报,1984,24(4): 87-94.

    ZHAO Guofan, WANG Qingxiang. Stress distribution and calculation formula for crack width analysis of reinforced concrete members[J]. Journal of Dalian University of Technology, 1984, 24(4): 87-94.
    [9] 朱虹,董志强,吴刚,等. FRP筋混凝土梁的刚度试验研究和理论计算[J]. 土木工程学报,2015,48(11): 44-53.

    ZHU Hong, DONG Zhiqiang, WU Gang, et al. Experimental study and theoretical calculation on the flexural stiffness of concrete beams reinforced with FRP bars[J]. China Civil Engineering Journal, 2015, 48(11): 44-53.
    [10] 贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D]. 北京:北京交通大学,2013.
    [11] 徐海宾,邓宗才. UHPC梁开裂弯矩和裂缝试验[J]. 哈尔滨工业大学学报,2014,46(4): 87-92.

    XU Haibin, DENG Zongcai. Cracking moment and crack width of ultra-high performance concrete beams[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 87-92.
    [12] YOO D Y, YOON Y S. A review on structural behavior, design, and application of ultra-high-performance fier-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2): 125-142. doi: 10.1007/s40069-016-0143-x
    [13] HASGUL U, TURKER K, BIROL T, et al. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios[J]. Structural Concrete, 2018, 19(6): 1577-1590. doi: 10.1002/suco.201700089
    [14] AHMED K S, HABIB M A, ASEF M F. Flexural response of stainless steel reinforced concrete beam[J]. Structures, 2021, 34: 589-603. doi: 10.1016/j.istruc.2021.08.019
    [15] 中华人民共和国住房和城乡建设部. 活性粉末混凝土:GB/T 31387—2015 [S]. 北京:中国标准出版社,2015.
    [16] 中国建筑科学研究院. 混凝土结构试验方法标准:GB/T 50152—2012[S]. 北京:中国建筑工业出版社,2012.
    [17] 高丹盈,张明,赵军. 疲劳荷载下钢纤维高强混凝土梁裂缝宽度的计算方法[J]. 土木工程学报,2013,46(3): 40-48.

    GAO Danying, ZHANG Ming, ZHAO Jun. Calculating method for crack width of steel fiber reinforced high-strength concrete beams under fatigue loads[J]. China Civil Engineering Journal, 2013, 46(3): 40-48.
    [18] 宁喜亮,丁一宁. 钢筋钢纤维自密实混凝土梁裂缝宽度试验研究[J]. 工程力学,2017,34(4): 116-124.

    NING Xiliang, DING Yining. Experimental research on crack width of steel fibers reinforced self-consolidating concrete beams[J]. Engineering Mechanics, 2017, 34(4): 116-124.
    [19] 高丹盈,刘建秀. 钢纤维混凝土基本理论[M]. 北京:科学技术文献出版社,1994.
    [20] 贾方方,安明喆,余自若,等. 钢筋与活性粉末混凝土黏结性能的梁式试验研究[J]. 铁道学报,2012,34(6): 83-87.

    JIA Fangfang, AN Mingzhe, YU Ziruo, et al. Beam test of bond behavior between steel bars and reactive powder concrete[J]. Journal of the China Railway Society, 2012, 34(6): 83-87.
    [21] BABY F, MARCHAND P, ATRACH M, et al. Analysis of flexure-shear behavior of UHPFRC beams based on stress field approach[J]. Engineering Structures, 2013, 56: 194-206. doi: 10.1016/j.engstruct.2013.04.024
    [22] 徐明雪,梁兴文,汪萍,等. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学,2019,36(8): 70-78.

    XU Mingxue, LIANG Xingwen, WANG Ping, et al. Theoretical investigation on normal section flexural capacity of uhpc beams[J]. Engineering Mechanics, 2019, 36(8): 70-78.
    [23] BAE B I, CHOI H K, CHOI C S. Flexural strength evaluation of reinforced concrete members with ultra high performance concrete[J]. Advances in Materials Science and Engineering, 2016, 2016: 2815247.1-2815247.11.
    [24] 王景全,戚家南,刘加平. 基于细观本构模型的UHPC梁受弯全过程分析[J]. 建筑结构学报,2020,41(9): 137-144.

    WANG Jingquan, QI Jianan, LIU Jiaping. Flexural analysis of UHPC beams based on a mesoscale constitutive model[J]. Journal of Building Structures, 2020, 41(9): 137-144.
    [25] 周建民,王眺,赵勇,等. 高强钢筋混凝土受弯构件裂缝宽度计算方法的研究[J]. 土木工程学报,2010,43(9): 69-76.

    ZHOU Jianmin, WANG Tiao, ZHAO Yong, et al. Research on the calculation of crack width for RC flexural member using high-strength bars[J]. China Civil Engineering Journal, 2010, 43(9): 69-76.
    [26] 程东辉,范永萱,王彦松. RC类活性粉末混凝土钢筋粘结-滑移本构模型[J]. 吉林大学学报(工学版),2021,51(4): 1317-1330.

    CHENG Donghui, FAN Yongxuan, WANG Yansong. Bond-slip constitutive model of steel bars and reactive powder concrete under standard curing[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1317-1330.
    [27] 张哲,李帅帅,朱平,等. 钢筋-超高性能混凝土界面黏结性能试验[J]. 湖南大学学报(自然科学版),2022,49(11): 105-115.

    ZHANG Zhe, LI Shuaishuai, ZHU Ping, et al. Test on interface bonding behavior between steel rebar and ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences), 2022, 49(11): 105-115.
    [28] 梁芮,黄远. 高强钢筋与超高性能混凝土黏结性能试验研究[J]. 建筑结构学报,2022,43(9): 294-302.

    LIANG Rui, HUANG Yuan. Experimental study on bond performance between high strength steel rebar and ultra-high performance concrete[J]. Journal of Building Structures, 2022, 43(9): 294-302.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  52
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-07-13
  • 网络出版日期:  2024-06-17
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回