Axial Compression Performance of Concrete Columns Confined by Ultra-High Performance Concrete Reinforced with High-Strength Steel Wire Cloth
-
摘要:
为掌握新型高强钢丝布增强超高性能混凝土(UHPC)的约束效应,研究高强钢丝布面密度和层数变化对约束混凝土柱轴压性能的影响规律. 首先,利用混凝土泊松比、延性指数和韧性指数对高强钢丝布增强UHPC的约束效应进行评估;其次,考虑高强钢丝布与UHPC提供的约束力,建立复合约束层的侧向约束力模型;最后,基于Ottosen破坏准则和有效约束指标,建立约束混凝土轴压本构模型. 研究结果表明:约束柱受压时呈明显的延性破坏,高强钢丝布增强UHPC约束体系可有效抑制裂缝发展,减缓加载后期试件刚度退化;与未约束柱相比,约束柱极限承载力、峰值压应变和峰值应力的最大增幅分别为147.0%、104.0%和58.0%;当高强钢丝布层数从1层增加至2层,面密度增加至3.3倍时,约束柱极限承载力、峰值压应变和峰值应力分别提高了8.4%、29.3%和15.8%,延性指数和韧性指数分别提高了50.3%和44.2%. 对比经典约束混凝土轴压本构模型,本文建立的模型结果与试验结果吻合度较高.
Abstract:In order to master the constraint effect of new high-strength steel wire cloth reinforced ultra-high performance concrete (UHPC), a study was conducted on the influence of the surface density and number of layers of high-strength steel wire cloth on the axial compression performance of confined concrete columns. Firstly, the constraint effect of high-strength steel wire cloth reinforced UHPC was evaluated using Poisson’s ratio, ductility index, and toughness index. Secondly, a lateral constraining force model of the composite constraining layer was established considering the constraining force provided by high-strength steel wire cloth and UHPC. Finally, a constitutive model of axial compression of confined concrete was established based on the Ottosen failure criterion and an effective constraint index. The results show that the confined column exhibits obvious ductile failure under compression, and the high-strength steel wire cloth reinforced UHPC confinement system can effectively suppress crack development and slow down the stiffness degradation of the specimen in the later stage of loading. Compared with the unconfined column, confined columns have maximum increases of 147.0%, 104.0%, and 58.0% in ultimate bearing capacity, peak compressive strain, and peak stress, respectively. When the number of layers of high-strength steel wire cloth increases from 1 to 2, and the surface density increases to 3.3 times, the ultimate bearing capacity, peak compressive strain, and peak stress of the confined column increase by 8.4%, 29.3%, and 15.8%, respectively, while the ductility index and toughness index increase by 50.3% and 44.2%, respectively. The model established in this paper highly agrees with the experimental results compared with the classical constitutive model of axial compression of confined concrete.
-
表 1 HSWU混凝土柱设计参数
Table 1. Design parameters of HSWU concrete columns
组号 试件编号 面密度/(g·m−2) 1 G600S1 600 G600S2 600 2 G1200S1 1200 G1200S2 1200 3 G2000S1 2000 G2000S2 2000 4 G0S0 表 2 UHPC配合比
Table 2. Mix proportions of UHPC
kg/m3 水泥 硅灰 矿粉 砂子/目 玻璃
纤维水 减水剂 (10,20] (20,40] (40,70] 646 108 322 457 303 316 39 172 10 表 3 短纤维性能参数
Table 3. Performance parameters of the short fiber
纤维种类 长度/
mm抗拉强
度/MPa密度/
(kg·m−3)弹性模
量/GPa直径/
mm玻璃纤维 18 1700 2600 72 0.014 表 4 混凝土抗压试验结果平均值
Table 4. Average value of concrete compression test results
混凝土强度 fcu/MPa fco/MPa Ec/GPa C60 60.8 39.8 35.8 表 5 UHPC抗压、抗拉试验结果平均值
Table 5. Average value of UHPC compression and tensile test results
fcu,u/MPa fco,u/MPa Eu/GPa ft,u/MPa εtu,max/% 113.2 84.07 40.1 6.85 0.18 表 6 HSWU约束混凝土柱延性指数和韧性指数
Table 6. Ductility index and toughness index of HSWU restrained concrete columns
试件编号 延性指数 韧性指数 G0S0 G600S1 5.81 0.52 G600S2 6.32 0.65 G1200S1 7.17 0.69 G1200S2 8.41 0.73 G2000S1 7.69 0.71 G2000S2 8.73 0.75 表 7 HSWU约束混凝土柱轴压试验试验结果
Table 7. Axial compression test results of HSWU restrained concrete columns
试件编号 Fmax /kN Fmax/F0 εcu εcu/εco εtu fcc/MPa fcc/fco εcc ε70 G600S1 2576 2.28 0.0041 1.58 0.0034 54.27 1.36 0.0046 0.0065 G600S2 2641 2.34 0.0047 1.81 0.0035 57.07 1.43 0.0049 0.0083 G1200S1 2595 2.30 0.0043 1.65 0.0034 56.85 1.43 0.0048 0.0091 G1200S2 2743 2.43 0.0052 2.00 0.0037 61.36 1.54 0.0057 0.0145 G2000S1 2617 2.32 0.0044 1.69 0.0035 57.64 1.45 0.0051 0.0119 G2000S2 2792 2.47 0.0053 2.04 0.0037 62.85 1.58 0.0063 0.0183 注:εtu为约束试件峰值荷载时的横向应变,fcc和εcc分别为HSWU约束混凝土核心区峰值应力和峰值应变,ε70为HSWU约束混凝土核心区峰值应力下降30%时所对应的轴向应变. -
[1] 管品武,涂雅筝,张普,等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报,2019,36(5): 1295-1305.GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1295-1305. [2] 邓宗才,肖锐,申臣良. 超高性能混凝土的制备与性能[J]. 材料导报,2013,27(9): 66-69,95. doi: 10.3969/j.issn.1005-023X.2013.09.015DENG Zongcai, XIAO Rui, SHEN Chenliang. A review on preparation and properties of ultra-high performance concrete[J]. Materials Reports, 2013, 27(9): 66-69,95. doi: 10.3969/j.issn.1005-023X.2013.09.015 [3] 徐海宾,邓宗才. 新型超高性能混凝土力学性能试验研究[J]. 混凝土,2014(4): 20-23. doi: 10.3969/j.issn.1002-3550.2014.04.006XU Haibin, DENG Zongcai. Mechanical properties of a new kind of ultra-high performance concrete[J]. Concrete, 2014(4): 20-23. doi: 10.3969/j.issn.1002-3550.2014.04.006 [4] 王洋,邵旭东,陈杰,等. 重度疲劳开裂钢桥桥面的UHPC加固技术[J]. 土木工程学报,2020,53(11): 92-101,115.WANG Yang, SHAO Xudong, CHEN Jie, et al. UHPC-based strengthening technique for significant fatigue cracking steel bridge decks[J]. China Civil Engineering Journal, 2020, 53(11): 92-101,115. [5] XIE J, FU Q H, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials, 2019, 204: 643-658. doi: 10.1016/j.conbuildmat.2019.01.220 [6] 周建庭,王蔚丞,杨俊,等. UHPC加固锈蚀钢筋混凝土柱轴心受压性能试验研究[J]. 混凝土,2021(12): 44-50. doi: 10.3969/j.issn.1002-3550.2021.12.010ZHOU Jianting, WANG Weicheng, YANG Jun, et al. Experimental study on the performance of UHPC reinforced corroded reinforced concrete column under axial compression[J]. Concrete, 2021(12): 44-50. doi: 10.3969/j.issn.1002-3550.2021.12.010 [7] SHAN B, LAI D D, XIAO Y, et al. Experimental research on concrete-filled RPC tubes under axial compression load[J]. Engineering Structures, 2018, 155: 358-370. doi: 10.1016/j.engstruct.2017.11.012 [8] TIAN H W, ZHOU Z, ZHANG Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork[J]. Engineering Structures, 2020, 210: 110403.1-110403.13. [9] LI F H, HEXIAO Y F, GAO H, et al. Axial behavior of reinforced UHPC-NSC composite column under compression[J]. Materials, 2020, 13(13):2905.1-2905.15. [10] 王全,陈勇,王玉彤,等. 高强钢丝布加固专用聚合物砂浆基本性能试验研究[J]. 混凝土,2022(6):130-133,141.WANG Quan, CHEN Yong, WANG Yutong, et al. Experimental study on basic properties of special polymer mortars for strengthening with high strength steel wire cloth[J]. Concrete, 2022(6):130-133,141. [11] 江佳斐,隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报,2019,36(8): 1957-1967.JIANG Jiafei, SUI Kai. Experimental study on compressive performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Composite Sinica, 2019, 36(8): 1957-1967. [12] 郭晓宇,亢景付,朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版),2017,47(2): 369-376.GUO Xiaoyu, KANG Jingfu, ZHU Jinsong. Constitutive relationship of ultrahigh performance concrete under uni-axial compression[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 369-376. [13] SHIN H O, MIN K H, MITCHELL D. Confinement of ultra-high-performance fiber reinforced concrete columns[J]. Composite Structures, 2017, 176: 124-142. doi: 10.1016/j.compstruct.2017.05.022 [14] HOSINIEH M M, AOUDE H, COOK W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures, 2015, 99: 388-401. doi: 10.1016/j.engstruct.2015.05.009 [15] SHEIKH S A, UZUMERI S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division, 1982, 108(12): 2703-2722. doi: 10.1061/JSDEAG.0006100 [16] SHEIKH S A, UZUMERI S M. Strength and ductility of tied concrete columns[J]. Journal of the Structural Division, 1980, 106(5): 1079-1102. doi: 10.1061/JSDEAG.0005416 [17] 中国混凝土与水泥制品协会. 超高性能混凝土结构设计规程:T/CCPA 35—2022[S]. 北京:中国建筑工业出版社,2022. [18] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) [19] OTTOSEN N S. A failure criterion for concrete[J]. Journal of the Engineering Mechanics Division, 1977, 103(4): 527-535. doi: 10.1061/JMCEA3.0002248 [20] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社,1999. [21] 余波,陶伯雄,刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学,2018,35(9): 135-144. doi: 10.6052/j.issn.1000-4750.2017.05.0398YU Bo, TAO Boxiong, LIU Shengbin. A probabilistic model for peak stress of concrete confined by ties[J]. Engineering Mechanics, 2018, 35(9): 135-144. doi: 10.6052/j.issn.1000-4750.2017.05.0398 [22] AFIFI M Z, MOHAMED H M, BENMOKRANE B. Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops[J]. Engineering Structures, 2015, 102: 202-213. doi: 10.1016/j.engstruct.2015.08.020 [23] CUSSON D, PAULTRE P. Stress-strain model for confined high-strength concrete[J]. Journal of Structural Engineering, 1995, 121(3): 468-477. doi: 10.1061/(ASCE)0733-9445(1995)121:3(468) [24] LÉGERON F, PAULTRE P. Uniaxial confinement model for normal-and high-strength concrete columns[J]. Journal of Structural Engineering, 2003, 129(2): 241-252. doi: 10.1061/(ASCE)0733-9445(2003)129:2(241)