• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑多充电桩排队和时间窗的电动货车路径规划

胡路 乐诗彤 朱娟秀

胡路, 乐诗彤, 朱娟秀. 考虑多充电桩排队和时间窗的电动货车路径规划[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230084
引用本文: 胡路, 乐诗彤, 朱娟秀. 考虑多充电桩排队和时间窗的电动货车路径规划[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230084
HU Lu, LE Shitong, ZHU Juanxiu. Electric Truck Route Planning Considering Multiple Charging Pile Queues and Time Windows[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230084
Citation: HU Lu, LE Shitong, ZHU Juanxiu. Electric Truck Route Planning Considering Multiple Charging Pile Queues and Time Windows[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230084

考虑多充电桩排队和时间窗的电动货车路径规划

doi: 10.3969/j.issn.0258-2724.20230084
基金项目: 国家自然科学基金项目(62203367)
详细信息
    作者简介:

    胡路(1985—),男,副教授,博士,研究方向为共享交通和城市轨道交通,E-mail:hulu@swjtu.edu.cn

    通讯作者:

    朱娟秀(1989—),女,讲师,博士,研究方向为物流与交通系统建模与优化,E-mail:1220190011@mail.xhu.edu.cn

  • 中图分类号: U492

Electric Truck Route Planning Considering Multiple Charging Pile Queues and Time Windows

  • 摘要:

    在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队. 为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,建立路径优化模型,并将充电站排队模型嵌入其中;优化目标包括最小化车辆耗电成本、司机工资、时间窗惩罚成本、充电桩总成本;为求解该模型,提出一种结合节约里程(C-W)和改进大邻域搜索(LNS)的混合启发式算法,其中,充电站的系统性能指标采用递归算法获得. 通过18组实验结果表明:同步增加充电桩数量可将车辆单次充电的平均排队时间控制在1~5 min以内,并有效减少2.6%~21.0%的总成本;增加充电站数量可缩短排队时间,但会增加整体路径总成本;当客户时间窗较短或服务时间较长时,充电桩数量变化对时间窗满足的影响更为显著.

     

  • 图 1  算法流程

    Figure 1.  Algorithm flowchart

    图 2  不同充电桩数量的影响

    Figure 2.  Impact of different numbers of charging piles

    图 3  不同充电站数量的影响

    Figure 3.  Impact of different numbers of charging stations

    图 4  优化解路径对比

    Figure 4.  Optimized solution path comparison

    表  1  符号说明

    Table  1.   Symbol descriptions

    符号说明符号说明
    ${d_{i,j}}$顶点$i$到顶点$j$的行驶距离${c_{\mathrm{s}}}$所有充电站安装充电桩的总费用
    ${t_{i,j}}$顶点$i$到顶点$j$的行驶时间${x_{i,j}}$ 当顶点$i$与顶点$j$在有向图中的路径被访问时为1,否则为0
    ${q_i}$客户点$i$的需求$y_i^{\mathrm{a}}$到达顶点$i$时剩余电量
    ${s_i}$客户点$i$的服务时间$y_i^{\text{d}}$离开顶点$i$时剩余电量
    ${e_i}$客户点$i$的最早服务时间${v_i}$到达顶点$i$时的迟到时长
    ${l_i}$客户点$i$的最晚服务时间${a_i}$到达顶点$i\;(i \in {V_{0,n + 1}})$的时间
    $G_0$车辆装载容量${f_i}$ 在返回仓库之前,以顶点$i$为最后访问节点的路线所花费的总时间
    $Q$车辆电池容量${u_i}$抵达顶点$i$时的剩余货物容量
    $g$电池充电速率${w_{i,k}}$ 顶点$i\;(i \in F)$进行第$k$次所服务车辆需要的等待时间
    $h$电池单位距离消耗速率${{\textit{z}}_{i,k}}$ 顶点$i\;(i \in F)$进行第$k$次所服务车辆需要的充电时间
    ${c_{\mathrm{e}}}$每单位距离消耗的电量成本${a_{i,k}}$顶点$i\;(i \in F)$第$k$次服务的车辆到达时间
    ${c_{\mathrm{p}}}$每单位时间惩罚成本$y_i^{\mathrm{a}}({a_{i,k}})$当车辆到达顶点$i$时间为${a_{i,k}}$时的剩余电量
    ${c_{\mathrm{f}}}$ 每个顶点的运行成本,包括维护、购置成本以及在客户点工作的成本${w_{i,k}}\left( {{a_{i,k}}} \right)$当车辆到达顶点$i$时间为${a_{i,k}}$时的等待时间
    ${c_{\mathrm{d}}}$每单位时间司机工资
    下载: 导出CSV
  • [1] 袁庆达,杜文,周再玲. 带软时间窗的混合车队车辆路线问题的模型和算法研究[J]. 西南交通大学学报,2001,36(4): 401-406. doi: 10.3969/j.issn.0258-2724.2001.04.015

    YUAN Qingda, DU Wen, ZHOU Zailing. Model and algorithms for mixed fleet vehicle routing problem with soft time windows[J]. Journal of Southwest Jiaotong University, 2001, 36(4): 401-406. doi: 10.3969/j.issn.0258-2724.2001.04.015
    [2] SCHNEIDER M, STENGER A, GOEKE D. The electric vehicle-routing problem with time windows and recharging stations[J]. Transportation Science, 2014, 48(4): 500-520. doi: 10.1287/trsc.2013.0490
    [3] DESAULNIERS G, ERRICO F, IRNICH S, et al. Exact algorithms for electric vehicle-routing problems with time windows[J]. Operations Research, 2016, 64(6): 1388-1405. doi: 10.1287/opre.2016.1535
    [4] GOEKE D. Granular tabu search for the pickup and delivery problem with time windows and electric vehicles[J]. European Journal of Operational Research, 2019, 278(3): 821-836. doi: 10.1016/j.ejor.2019.05.010
    [5] PELLETIER S, JABALI O, LAPORTE G. The electric vehicle routing problem with energy consumption uncertainty[J]. Transportation Research Part B: Methodological, 2019, 126: 225-255. doi: 10.1016/j.trb.2019.06.006
    [6] CORTÉS-MURCIA D L, PRODHON C, MURAT AFSAR H. The electric vehicle routing problem with time windows, partial recharges and satellite customers[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 130: 184-206. doi: 10.1016/j.tre.2019.08.015
    [7] DOPPSTADT C, KOBERSTEIN A, VIGO D. The hybrid electric vehicle—traveling salesman problem with time windows[J]. European Journal of Operational Research, 2020, 284(2): 675-692. doi: 10.1016/j.ejor.2019.12.031
    [8] KESKIN M, ÇATAY B, LAPORTE G. A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations[J]. Computers & Operations Research, 2021, 125: 105060.1-105060.15.
    [9] YANG S Y, NING L J, TONG L C, et al. Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network[J]. Expert Systems with Applications, 2021, 176: 114804.1-114804.48.
    [10] YAO C Q, CHEN S B, YANG Z Y. Joint routing and charging problem of multiple electric vehicles: a fast optimization algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8184-8193. doi: 10.1109/TITS.2021.3076601
    [11] KESKIN M, ÇATAY B. Partial recharge strategies for the electric vehicle routing problem with time windows[J]. Transportation Research Part C: Emerging Technologies, 2016, 65: 111-127. doi: 10.1016/j.trc.2016.01.013
    [12] 葛显龙,竹自强. 带软时间窗的电动车辆路径优化问题[J]. 工业工程与管理,2019,24(4): 96-104,112.

    GE Xianlong, ZHU Ziqiang. The electric vehicles routing problem with soft time window[J]. Industrial Engineering and Management, 2019, 24(4): 96-104,112.
    [13] XIAO Y Y, KONAK A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 88: 146-166. doi: 10.1016/j.tre.2016.01.011
    [14] XU Z T, ELOMRI A, POKHAREL S, et al. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows[J]. Computers & Industrial Engineering, 2019, 137: 106011.1-106011.14.
    [15] ZULVIA F E, KUO R J, NUGROHO D Y. A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products[J]. Journal of Cleaner Production, 2020, 242: 118428.1-118428.14.
    [16] MONTOYA A, GUÉRET C, MENDOZA J E, et al. The electric vehicle routing problem with nonlinear charging function[J]. Transportation Research Part B: Methodological, 2017, 103: 87-110. doi: 10.1016/j.trb.2017.02.004
    [17] ZUO X R, XIAO Y Y, YOU M, et al. A new formulation of the electric vehicle routing problem with time windows considering concave nonlinear charging function[J]. Journal of Cleaner Production, 2019, 236: 117687.1-117687.18.
    [18] FROGER A, MENDOZA J E, JABALI O, et al. Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions[J]. Computers & Operations Research, 2019, 104: 256-294.
    [19] POONTHALIR G, NADARAJAN R. Green vehicle routing problem with queues[J]. Expert Systems with Applications, 2019, 138: 112823.1-112823.18.
    [20] KESKIN M, LAPORTE G, ÇATAY B. Electric vehicle routing problem with time-dependent waiting times at recharging stations[J]. Computers & Operations Research, 2019, 107: 77-94.
    [21] SHAW P. Using constraint programming and local search methods to solve vehicle routing problems[M]// GOEBEL R, WAHLSTER W, ZHOU Z H. Lecture notes in computer science. Berlin:Springer, 1998:417-431.
    [22] 刘小兰,郝志峰,汪国强,等. 有时间窗的车辆路径问题的近似算法研究[J]. 计算机集成制造系统,2004,10(7): 825-831. doi: 10.3969/j.issn.1006-5911.2004.07.019

    LIU Xiaolan, HAO Zhifeng, WANG Guoqiang, et al. Improved large neighborhood search algorithm for vehicle routing problem with time windows[J]. Computer Integrated Manufacturing Systems, 2004, 10(7): 825-831. doi: 10.3969/j.issn.1006-5911.2004.07.019
    [23] SINTEF Digital. Transportation optimization portal [DB/OL]. (2008-02-27)[2023-02-19]. https://www.sintef.no/projectweb/top/vrptw.
    [24] KESKIN M, ÇATAY B. A matheuristic method for the electric vehicle routing problem with time windows and fast chargers[J]. Computers & Operations Research, 2018, 100: 172-188.
    [25] EMEÇ U, ÇATAY B, BOZKAYA B. An adaptive large neighborhood search for an E-grocery delivery routing problem[J]. Computers & Operations Research, 2016, 69: 109-125.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  29
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-07-02
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回