• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑动态刚度的电磁阻尼器-轴承-转子减振研究

肖玲 周游 赵晨曦 郑善栋 程文杰 冯圣

肖玲, 周游, 赵晨曦, 郑善栋, 程文杰, 冯圣. 考虑动态刚度的电磁阻尼器-轴承-转子减振研究[J]. 西南交通大学学报, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065
引用本文: 肖玲, 周游, 赵晨曦, 郑善栋, 程文杰, 冯圣. 考虑动态刚度的电磁阻尼器-轴承-转子减振研究[J]. 西南交通大学学报, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065
XIAO Ling, ZHOU You, ZHAO Chenxi, ZHENG Shandong, CHENG Wenjie, FENG Sheng. Vibration Reduction of Bearing-Rotor with Electromagnetic Damper Considering Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065
Citation: XIAO Ling, ZHOU You, ZHAO Chenxi, ZHENG Shandong, CHENG Wenjie, FENG Sheng. Vibration Reduction of Bearing-Rotor with Electromagnetic Damper Considering Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065

考虑动态刚度的电磁阻尼器-轴承-转子减振研究

doi: 10.3969/j.issn.0258-2724.20230065
基金项目: 国家自然科学基金(52275271);陕西省自然科学基金(2022JM-194)
详细信息
    作者简介:

    肖玲(1983—) ,女,教授,博士,研究方向为电磁轴承、高速电机转子、软磁复合材料,E-mail:xiaoling@xust.edu.cn

  • 中图分类号: TH133.3

Vibration Reduction of Bearing-Rotor with Electromagnetic Damper Considering Dynamic Stiffness

  • 摘要:

    为了有效抑制转子系统的不平衡振动,本文提出将考虑动态刚度的电磁阻尼器应用于转子系统中. 首先,建立转子系统运动方程并对其进行无量纲化;其次,基于等效磁路法,建立了考虑涡流效应的电磁阻尼器模型,分析了涡流效应对电磁阻尼器刚度的影响,并采用非线性动态自适应惯性权重的PSO算法对电磁阻尼器的PID (比例、积分、微分)3个控制参数进行优化;最后,对转子的动力学特性进行了分析. 研究结果表明:在涡流效应的影响下,电磁阻尼器的刚度是动态变化的,当转速为100 kHz时,理论上位移刚度和电流刚度分别下降了10.0%、6.6%;通过非线性动态自适应惯性权重的PSO算法优化得到的PID参数响应快,超调量小,能够在0.1 s内迅速地将圆盘的偏离量调至0,具有良好的控制效果;相比于静态刚度,考虑动态刚度后,圆盘的振幅有所增大,当转速为4782 Hz时,圆盘的振幅增大了5.33%;偏心距增大会导致圆盘的振幅增大,当转速超过242 Hz时,圆盘振幅增大的幅度与圆盘偏心距增大的幅度几乎成正比.

     

  • 图 1  带电磁阻尼器的电磁轴承-转子系统的模型

    Figure 1.  Model of electromagnetic bearing-rotor system with electromagnetic damper

    图 2  电磁阻尼器结构示意

    Figure 2.  Structure of electromagnetic damper

    图 3  等效磁路模型

    Figure 3.  Equivalent magnetic circuit model

    图 4  动态刚度频率响应

    Figure 4.  Frequency response of dynamic stiffness

    图 5  粒子群算法优化PID参数

    Figure 5.  PSO for PID parameters

    图 6  圆盘响应曲线

    Figure 6.  Response curve of disk

    图 7  两种刚度下无量纲振幅的变化曲线

    Figure 7.  Variation curves of dimensionless amplitude under two kinds of stiffness

    图 8  无量纲振幅相对误差曲线

    Figure 8.  Relative error curve of dimensionless amplitude

    图 9  两种刚度下圆盘的时域图(Ω=70.0)

    Figure 9.  Time domain of disk under two kinds of stiffness (Ω=70.0)

    图 10  两种刚度下圆盘的轴心轨迹图(Ω=70.0)

    Figure 10.  Axis center track of disk under two kinds of stiffness (Ω = 70.0)

    图 11  两种刚度下圆盘的时域图(Ω=71.0)

    Figure 11.  Time domain of disk under two kinds of stiffness (Ω = 71.0)

    图 12  两种刚度下圆盘的轴心轨迹图(Ω=71.0)

    Figure 12.  Axis center track of disk under two kinds of stiffness (Ω = 71.0)

    图 13  不同偏心距时无量纲振幅的变化曲线

    Figure 13.  Variation curve of dimensionless amplitude with different eccentricity

    图 14  无量纲振幅的比值

    Figure 14.  Ratio of dimensionless amplitude

    表  1  电磁阻尼器结构参数

    Table  1.   Structure parameters for electromagnetic damper

    结构参数取值
    圆盘直径 D/mm150
    转子直径 d/mm35
    阻尼器外径 D0/mm340.6
    阻尼器内径 D2/mm153.0
    定子厚度 b/mm50
    磁极面积 A/mm21500
    线圈匝数 N/匝280
    静态电流 I0/A2.3
    磁极角 α/(°)22.5
    气隙长度 C1/mm1.5
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Parameters of simulation

    系统参数取值
    圆盘质量 m1/kg6.39
    轴颈质量 m2/kg2.15
    转轴刚度 k/(N·m−1)106
    初始相位角 φ/(°)45
    原始偏心距 e0/mm0.5
    固有频率 ωn/(rad·s−1)305
    电磁轴承气隙长度 C2/mm0.4
    电磁轴承位移刚度 K2/(N·m−1)3.657 × 105
    电磁轴承电流刚度 G2/(N·A−1)73.14
    比例增益 kP2/(A·m−1)5500
    积分增益 kI2/(A·(m·s)−1)8000
    微分增益 kD2/(A·s·m−1)3
    下载: 导出CSV
  • [1] 张凤阁,杜光辉,王天煜,等. 高速电机发展与设计综述[J]. 电工技术学报,2016,31(7): 1-18. doi: 10.3969/j.issn.1000-6753.2016.07.001

    ZHANG Fengge, DU Guanghui, WANG Tianyu, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. doi: 10.3969/j.issn.1000-6753.2016.07.001
    [2] ZHANG Y P, HE L D, YANG J J, et al. Vibration control of Tie rod rotors with optimization of unbalanced force and unbalanced moment[J]. IEEE Access, 2020, 8: 66578-66587. doi: 10.1109/ACCESS.2020.2985847
    [3] HEINDEL S, MÜLLER P C, RINDERKNECHT S. Unbalance and resonance elimination with active bearings on general rotors[J]. Journal of Sound and Vibration, 2018, 431: 422-440. doi: 10.1016/j.jsv.2017.07.048
    [4] 吴华春,涂星,周建,等. 磁悬浮转子不平衡振动控制研究综述[J]. 轴承,2022(3): 1-9. doi: 10.19533/j.issn1000-3762.2022.03.001

    WU Huachun, TU Xing, ZHOU Jian, et al. Review on unbalanced vibration control for magnetic suspension rotor[J]. Bearing, 2022(3): 1-9. doi: 10.19533/j.issn1000-3762.2022.03.001
    [5] 黄威,邓智泉,李克翔,等. 一种磁悬浮轴承支承刚性转子现场动平衡方法[J]. 电工技术学报,2020,35(22): 4636-4646. doi: 10.19595/j.cnki.1000-6753.tces.191289

    HUANG Wei, DENG Zhiquan, LI Kexiang, et al. A filed dynamic balancing method for rigid rotor supported by magnetic bearings[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4636-4646. doi: 10.19595/j.cnki.1000-6753.tces.191289
    [6] SHE C F, ZHANG M, GE Y B, et al. Design and simulation analysis of an electromagnetic damper for reducing shimmy in electrically actuated nose wheel steering systems[J]. Aerospace, 2022, 9(2): 1-21. doi: 10.3390/aerospace9020113
    [7] 黄翠翠,李晓龙,杨洋,等. 基于自抗扰技术的机械-电磁悬浮复合隔振控制[J]. 西南交通大学学报,2022,57(3): 582-587,617. doi: 10.3969/j.issn.0258-2724.20210850

    HUANG Cuicui, LI Xiaolong, YANG Yang, et al. Mechanical-electromagnetic suspension compound vibration isolation control based on active disturbance rejection technology[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 582-587,617. doi: 10.3969/j.issn.0258-2724.20210850
    [8] CAI Q L, HUA Y Y, ZHU S Y. Energy-harvesting adaptive vibration damping in high-speed train suspension using electromagnetic dampers[J]. International Journal of Structural Stability and Dynamics, 2021, 21(14): 2140002.1-2140002.28.
    [9] XIA X J, ZHENG M Y, LIU P F, et al. Friction observer-based hybrid controller for a seat suspension with semi-active electromagnetic damper[J]. Mechatronics, 2021, 76: 102568.1-102568.11.
    [10] KAVIANIPOUR O. Effects of the passive electromagnetic damper on the behavior of a fluid-conveying pipeline[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(7): 2329-2339. doi: 10.1177/0954406218784627
    [11] 祝长生,钟志贤. 带主动电磁阻尼器的裂纹转子系统动力学[J]. 振动工程学报,2010,23(3): 298-304. doi: 10.3969/j.issn.1004-4523.2010.03.010

    ZHU Changsheng, ZHONG Zhixian. The dynamics of a cracked rotor with active magnetic dampers[J]. Journal of Vibration Engineering, 2010, 23(3): 298-304. doi: 10.3969/j.issn.1004-4523.2010.03.010
    [12] ZACCARDO V M, BUCKNER G D. Active magnetic dampers for controlling lateral rotor vibration in high-speed rotating shafts[J]. Mechanical Systems and Signal Processing, 2021, 152: 107445.1-107445.16.
    [13] XIANG B, WONG W. Electromagnetic vibration absorber for torsional vibration in high speed rotational machine[J]. Mechanical Systems and Signal Processing, 2020, 140: 106639.1-106639.18.
    [14] SUN J J, ZHOU H, JU Z Y. Dynamic stiffness analysis and measurement of radial active magnetic bearing in magnetically suspended molecular pump[J]. Scientific Reports, 2020, 10: 1401.1-1401.16. doi: 10.1038/s41598-020-70784-7
    [15] SUN J J, ZHOU H, MA X, et al. Study on PID tuning strategy based on dynamic stiffness for radial active magnetic bearing[J]. ISA Transactions, 2018, 80: 458-474. doi: 10.1016/j.isatra.2018.07.036
    [16] LE Y, FANG J C, HAN B C, et al. Dynamic circuit model of a radial magnetic bearing with permanent magnet bias and laminated cores[J]. International Journal of Applied Electromagnetics and Mechanics, 2014, 46(1): 43-60. doi: 10.3233/JAE-141746
    [17] 肖玲,赵晨曦,窦经纬,等. 轴-径向混合磁轴承动态特性及控制研究[J]. 西南交通大学学报,2022,57(3): 640-647,656. doi: 10.3969/j.issn.0258-2724.20210883

    XIAO Ling, ZHAO Chenxi, DOU Jingwei, et al. Research on dynamic characteristics and control of axial-radial hybrid magnetic bearing[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 640-647,656. doi: 10.3969/j.issn.0258-2724.20210883
    [18] XIAO L, HE X W, CHENG W J, et al. Structural optimization and dynamic characteristics of the new type 3-degrees of freedom axial and radial hybrid magnetic bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(9): 5097-5110. doi: 10.1177/09544062211052826
    [19] 王生亮,刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真,2021,38(4): 249-253,451. doi: 10.3969/j.issn.1006-9348.2021.04.050

    WANG Shengliang, LIU Genyou. A nonlinear dynamic adaptive inertial weight particle swarm optimization[J]. Computer Simulation, 2021, 38(4): 249-253,451. doi: 10.3969/j.issn.1006-9348.2021.04.050
    [20] KUMAR P, TIWARI R. Dynamic analysis and identification of unbalance and misalignment in a rigid rotor with two offset discs levitated by active magnetic bearings: a novel trial misalignment approach[J]. Propulsion and Power Research, 2021, 10(1): 58-82. doi: 10.1016/j.jppr.2020.06.003
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  152
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-06-08
  • 网络出版日期:  2023-07-01
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回