• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大间距下高耸双烟囱风致特性试验研究

雷伟 王骑 李明水 李志国

雷伟, 王骑, 李明水, 李志国. 大间距下高耸双烟囱风致特性试验研究[J]. 西南交通大学学报, 2024, 59(1): 104-112. doi: 10.3969/j.issn.0258-2724.20230056
引用本文: 雷伟, 王骑, 李明水, 李志国. 大间距下高耸双烟囱风致特性试验研究[J]. 西南交通大学学报, 2024, 59(1): 104-112. doi: 10.3969/j.issn.0258-2724.20230056
LEI Wei, WANG Qi, LI Mingshui, LI Zhiguo. Experimental Study on Wind-Induced Characteristics of Tall Double Chimneys with Large Spacing[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 104-112. doi: 10.3969/j.issn.0258-2724.20230056
Citation: LEI Wei, WANG Qi, LI Mingshui, LI Zhiguo. Experimental Study on Wind-Induced Characteristics of Tall Double Chimneys with Large Spacing[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 104-112. doi: 10.3969/j.issn.0258-2724.20230056

大间距下高耸双烟囱风致特性试验研究

doi: 10.3969/j.issn.0258-2724.20230056
基金项目: 国家自然科学基金(51678508)
详细信息
    作者简介:

    雷伟(1994—),男,博士研究生,研究方向为结构、桥梁风工程,E-mail:lei_@my.swjtu.edu.cn

    通讯作者:

    王骑(1980—),男,副教授,博士,博士生导师,研究方向为结构、桥梁风工程,E-mail:wangchee_wind@swjtu.edu.cn

  • 中图分类号: TU279.742

Experimental Study on Wind-Induced Characteristics of Tall Double Chimneys with Large Spacing

  • 摘要:

    双烟囱结构在自然风作用下存在气动干扰效应,从而诱发较大风致振动,威胁结构安全. 合理计算和预测风振响应是双烟囱抗风设计的关键. 以某中心距为8倍平均直径的双烟囱结构为研究对象,开展刚性模型测力和气弹模型测振风洞试验,将试验结果与中国规范、欧洲规范和CICIND (International Committee on Industrial Construction)规范计算值进行比较,详细研究双烟囱在不同风向角下的风致响应特性. 研究结果表明:在烟囱串列布置下,迎风侧烟囱具有遮挡和干扰效应,一方面使得背风侧烟囱底部弯矩减小,另一方面使其横风向位移大于在其他风向角下的值;由于厂房的干扰效应,风振系数中国规范计算值与试验值接近;当烟囱高度超过厂房高度后,计算值较试验值偏大;对于横向响应,中国规范计算值较试验值大37.1%,欧洲规范计算值与试验值接近,仅偏小6.9%,CICIND规范计算值比试验值小17.1%.

     

  • 图 1  烟囱前三阶振型

    Figure 1.  First three modes of vibration of chimney

    图 2  风剖面比较

    Figure 2.  Comparison of wind profile

    图 3  湍流度剖面比较

    Figure 3.  Comparison of turbulence intensity profile

    图 4  风向角和坐标系的定义

    Figure 4.  Definition of wind angle and coordinate system

    图 5  试验模型及风场

    Figure 5.  Test model and wind field

    图 6  不同高度下烟囱Ⅰ的体型系数

    Figure 6.  Body configuration coefficient of chimney Ⅰ at different heights

    图 7  烟囱Ⅰ的整体体型系数随24个风向角的变化

    Figure 7.  Variation of whole body configuration coefficient of chimney Ⅰ with 24 wind angles

    图 8  典型风向角下烟囱Ⅰ的风振系数风洞试验值与规范计算值比较

    Figure 8.  Comparison of wind tunnel test and values calculated by codes of wind-induced vibration coefficient of chimney Ⅰ at typical wind angles

    图 9  烟囱Ⅰ弯矩值随24个风向角的变化

    Figure 9.  Variation of bending moment of chimney Ⅰ with 24 wind angles

    图 10  烟囱Ⅰ的合成弯矩值随24个风向角的变化

    Figure 10.  Variation of synthetical bending moment of chimney Ⅰ with 24 wind angles

    图 11  顶部位移值随24个风向角的变化

    Figure 11.  Variation of top displacement with 24 wind angles

    表  1  自振频率比较

    Table  1.   Comparison of natural frequency of vibration

    阶数要求值/Hz试验值/Hz差值/%
    12.9382.9021.2
    216.24715.5254.4
    343.52341.5474.5
    下载: 导出CSV

    表  2  阻力系数随风速的变化

    Table  2.   Variation of drag coefficient with wind speed

    风速/(m·s−1雷诺数阻力系数
    5.02.8 × 1040.69
    8.04.5 × 1040.73
    11.06.2 × 1040.76
    14.07.9 × 1040.77
    17.09.6 × 1040.78
    20.011.3 × 1040.75
    23.013.0 × 1040.73
    26.014.7 × 1040.74
    29.016.4 × 1040.70
    下载: 导出CSV

    表  3  烟囱顶点横风向位移响应

    Table  3.   Displacement responses of cross-wind displacement at the top of the chimney m

    方法位移响应值
    风洞试验0.175
    中国规范[24]0.240
    欧洲规范[25-26]0.163
    CICIND 模式规范[27]0.145
    下载: 导出CSV
  • [1] GORSKI P, CHMIELEWSKI T. A comparative study of along and cross-wind responses of a tall chimney with and without flexibility of soil[J]. Wind and Structures, 2008, 11(2): 121-135. doi: 10.12989/was.2008.11.2.121
    [2] KAWECKI J, ŻURAŃSKI J A. Cross-wind vibrations of steel chimneys—a new case history[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1166-1175.
    [3] VERBOOM G K, VAN KOTEN H. Vortex excitation: three design rules tested on 13 industrial chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 145-154. doi: 10.1016/j.jweia.2009.10.008
    [4] 张玉峰,李超. 印度BALCO电厂在建烟囱倒塌事故原因分析[J]. 武汉大学学报(工学版),2011,44(增1): 314-318.

    ZHANG Yufeng, LI Chao. Analysis of collapse causes for a chimney under construction in Balco Power Plant of India[J]. Engineering Journal of Wuhan University, 2011, 44(S1): 314-318.
    [5] 中华人民共和国住房和城乡建设部. 烟囱设计规范: GB 50051—2013[S]. 北京: 中国计划出版社, 2013.
    [6] 中华人民共和国住房和城乡建设部. 高耸结构设计标准: GB 50135—2019[S]. 北京: 中国计划出版社, 2019.
    [7] 孙一飞,刘庆宽,马文勇,等. 超高烟囱的风荷载试验研究[J]. 工程力学,2020,37(增1): 270-274.

    SUN Yifei, LIU Qingkuan, MA Wenyong, et al. The wind load of super high chimneys[J]. Engineering Mechanics, 2020, 37(S1): 270-274.
    [8] 李晓娜,陆煜,刘庆宽,等. 圆形截面烟囱风致干扰效应试验研究[J]. 工程力学,2015,32(增1): 159-162,166.

    LI Xiaona, LU Yu, LIU Qingkuan, et al. Experimental study on wind-induced interference effects of circular section chimneys[J]. Engineering Mechanics, 2015, 32(S1): 159-162,166.
    [9] 于昆龙,王卫华,黄汉杰,等. 新型四管自立式钢烟囱的风荷载[J]. 西南交通大学学报,2011,46(3): 421-426.

    YU Kunlong, WANG Weihua, HUANG Hanjie, et al. Investigations of wind loads on a new type of self-supporting four pipe steel chimney[J]. Journal of Southwest Jiaotong University, 2011, 46(3): 421-426.
    [10] 杨群,刘小兵,刘庆宽,等. 正品字形布置三管钢烟囱风荷载的数值模拟[J]. 工程力学,2017,34(增1): 154-158.

    YANG Qun, LIU Xiaobing, LIU Qingkuan, et al. Numerical simulation of wind load of three steel chimneys in regular triangular arrangement[J]. Engineering Mechanics, 2017, 34(S1): 154-158.
    [11] 柯世堂,王晓海,徐璐. 三管集束式钢烟囱风致响应与风振系数研究[J]. 建筑结构学报,2021,42(10): 130-138.

    KE Shitang, WANG Xiaohai, XU Lu. Study on wind-induced response and wind vibration coefficient of a three-tube cluster steel chimney[J]. Journal of Building Structures, 2021, 42(10): 130-138.
    [12] LIANG S G, YANG W, SONG J, et al. Wind-induced responses of a tall chimney by aeroelastic wind tunnel test using a continuous model[J]. Engineering Structures, 2018, 176: 871-880. doi: 10.1016/j.engstruct.2018.09.015
    [13] 陈鑫,李爱群,王泳,等. 高耸钢烟囱环形TLD减振试验设计与模型修正[J]. 建筑结构学报,2015,36(1): 30-36.

    CHEN Xin, LI Aiqun, WANG Yong, et al. Model design and updating for experiment of ring shaped TLD control of high-rise steel chimney[J]. Journal of Building Structures, 2015, 36(1): 30-36.
    [14] 陈鑫,李爱群,王泳,等. 高耸钢烟囱环形TLD减振试验与数值模拟[J]. 建筑结构学报,2015,36(1): 37-43.

    CHEN Xin, LI Aiqun, WANG Yong, et al. Experiment and numerical simulation of ring shaped TLD control of high-rise steel chimney[J]. Journal of Building Structures, 2015, 36(1): 37-43.
    [15] 陈鑫,李爱群,王洪,等. 自立式高耸钢结构黏滞阻尼减振技术及其设计方法[J]. 建筑结构学报,2016,37(6): 78-84.

    CHEN Xin, LI Aiqun, WANG Hong, et al. Viscous damping technology and design method for self-standing high-rise steel structures[J]. Journal of Building Structures, 2016, 37(6): 78-84.
    [16] 陈鑫,李爱群,王泳,等. 国内外规范自立式高耸结构等效风荷载及响应比较[J]. 建筑结构学报,2014,35(4): 304-311.

    CHEN Xin, LI Aiqun, WANG Yong, et al. Comparative study on equivelent wind loads and dynamic responses of self-standing high-rise structures in different codes[J]. Journal of Building Structures, 2014, 35(4): 304-311.
    [17] BROWNJOHN J M W, CARDEN E P, GODDARD C R, et al. Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 169-179. doi: 10.1016/j.jweia.2009.10.013
    [18] BELVER A V, KOO K, IBÁN A L, et al. Enhanced vortex shedding in a 183 m industrial chimney[J]. Advances in Structural Engineering, 2014, 17(7): 951-960. doi: 10.1260/1369-4332.17.7.951
    [19] LUPI F, NIEMANN H J, HÖFFER R. A novel spectral method for cross-wind vibrations: application to 27 full-scale chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 353-365. doi: 10.1016/j.jweia.2017.10.014
    [20] VICKERY B J, BASU R I. Across-wind vibrations of structures of circular cross-section —part I: development of a mathematical model for two-dimensional conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(1): 49-73. doi: 10.1016/0167-6105(83)90080-6
    [21] RUSCHEWEYH H. Ein verfeinertes, praxisnahes Berechnungsverfahren wirbelerregter Schwingungen von schlanken Baukonstruktionen im wind; Beiträge zur Anwendung der Aeroelastik im Bauwesen[M]. Innsbruck: Universität Innsbruck, 1986.
    [22] ARUNACHALAM S, LAKSHMANAN N. Across-wind response of tall circular chimneys to vortex shedding[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 187-195. doi: 10.1016/j.jweia.2015.06.005
    [23] ARUNACHALAM S, LAKSHMANAN N. Non-linear modelling of vortex induced lock-in effects on circular chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104201.1-104201.11.
    [24] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [25] European Committee for Standardization. Eurocode 3: design of steel structures—part 3-2: towers, masts and chimneys-chimneys: BS EN 1993-3-2[S]. Brussels: European Committee for Standardization, 2006.
    [26] European Committee for Standardization. Eurocode 1: actions on structures—part 1-4: general actions—wind actions: BS EN 1991-1-4[S]. Brussels: European Committee for Standardization, 2005.
    [27] International Committee for Industrial Construction. Revision 1-1999 CICIND model code for steel chimneys: amendment A[S]. Zurich: CICIND, 2002.
    [28] 刘小兵,吴倩云,姜会民,等. 串列多圆柱气动力干扰效应的试验研究[J]. 振动与冲击,2021,40(7): 37-44.

    LIU Xiaobing, WU Qianyun, JIANG Huimin, et al. Tests for aerodynamic force interference effect of tandem cylinders[J]. Journal of Vibration and Shock, 2021, 40(7): 37-44.
    [29] GIARALIS A, PETRINI F. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter[J]. Journal of Structural Engineering, 2017, 143(9): 04017127.1-04017127.11.
    [30] GORSKI P. Some aspects of the dynamic cross-wind response of tall industrial chimney[J]. Wind and Structures: an International Journal, 2009, 12(3): 259-279. doi: 10.12989/was.2009.12.3.259
    [31] 高标,周承宗,朱庆东. 塔架式烟囱的顺风向风振响应研究[J]. 武汉大学学报(工学版),2018,51(增1): 424-429.

    GAO Biao, ZHOU Chengzong, ZHU Qingdong. Research on along-wind vibration response of frame steel chimney[J]. Engineering Journal of Wuhan University, 2018, 51(S1): 424-429.
    [32] LI S Y, LIU M, LI H X, et al. Effects of structural damping on wind-induced responses of a 243-meter-high solar tower based on a novel elastic test model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 1-11. doi: 10.1016/j.jweia.2017.10.027
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  85
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-09-11
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回