Experimental Study on Wind-Induced Characteristics of Tall Double Chimneys with Large Spacing
-
摘要:
双烟囱结构在自然风作用下存在气动干扰效应,从而诱发较大风致振动,威胁结构安全. 合理计算和预测风振响应是双烟囱抗风设计的关键. 以某中心距为8倍平均直径的双烟囱结构为研究对象,开展刚性模型测力和气弹模型测振风洞试验,将试验结果与中国规范、欧洲规范和CICIND (International Committee on Industrial Construction)规范计算值进行比较,详细研究双烟囱在不同风向角下的风致响应特性. 研究结果表明:在烟囱串列布置下,迎风侧烟囱具有遮挡和干扰效应,一方面使得背风侧烟囱底部弯矩减小,另一方面使其横风向位移大于在其他风向角下的值;由于厂房的干扰效应,风振系数中国规范计算值与试验值接近;当烟囱高度超过厂房高度后,计算值较试验值偏大;对于横向响应,中国规范计算值较试验值大37.1%,欧洲规范计算值与试验值接近,仅偏小6.9%,CICIND规范计算值比试验值小17.1%.
Abstract:Double-chimney structure has aerodynamic interference effects under natural wind, which will induce large wind-induced vibrations, further threatening the safety of the structure. Reasonable calculation and prediction of wind-induced vibration responses are essential for wind resistance design of double-chimney structures. A double-chimney structure with a center distance equal to eight times its average diameter was experimentally tested. The wind tunnel tests of force measurement with a rigid model and vibration measurement with an elastic model were carried out. The test results were compared with the calculated values of the Chinese code, European code, and International Committee on Industrial Construction (CICIND) code to explore the wind-induced response characteristics of the double chimneys under different wind angles. The results demonstrate that in tandem arrangement, the chimney on the windward side shows the shielding and interference effects. Therefore, the bending moment at the bottom of the chimney on the leeward side is reduced, and the across-wind displacement is greater than that at other wind angles. The calculated values of wind-induced vibration coefficients are close to the test values due to the interference effects of the power station. When the height of the chimney exceeds the station, the calculated values are greater than the test values. In terms of the across-wind responses, the values calculated by the Chinese code are 37.1% larger than the test values. The values calculated by the European code are close to and only 6.9% smaller than the test values, but the values calculated by the CICIND code are 17.1% smaller than the test values.
-
表 1 自振频率比较
Table 1. Comparison of natural frequency of vibration
阶数 要求值/Hz 试验值/Hz 差值/% 1 2.938 2.902 1.2 2 16.247 15.525 4.4 3 43.523 41.547 4.5 表 2 阻力系数随风速的变化
Table 2. Variation of drag coefficient with wind speed
风速/(m·s−1) 雷诺数 阻力系数 5.0 2.8 × 104 0.69 8.0 4.5 × 104 0.73 11.0 6.2 × 104 0.76 14.0 7.9 × 104 0.77 17.0 9.6 × 104 0.78 20.0 11.3 × 104 0.75 23.0 13.0 × 104 0.73 26.0 14.7 × 104 0.74 29.0 16.4 × 104 0.70 -
[1] GORSKI P, CHMIELEWSKI T. A comparative study of along and cross-wind responses of a tall chimney with and without flexibility of soil[J]. Wind and Structures, 2008, 11(2): 121-135. doi: 10.12989/was.2008.11.2.121 [2] KAWECKI J, ŻURAŃSKI J A. Cross-wind vibrations of steel chimneys—a new case history[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1166-1175. [3] VERBOOM G K, VAN KOTEN H. Vortex excitation: three design rules tested on 13 industrial chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 145-154. doi: 10.1016/j.jweia.2009.10.008 [4] 张玉峰,李超. 印度BALCO电厂在建烟囱倒塌事故原因分析[J]. 武汉大学学报(工学版),2011,44(增1): 314-318.ZHANG Yufeng, LI Chao. Analysis of collapse causes for a chimney under construction in Balco Power Plant of India[J]. Engineering Journal of Wuhan University, 2011, 44(S1): 314-318. [5] 中华人民共和国住房和城乡建设部. 烟囱设计规范: GB 50051—2013[S]. 北京: 中国计划出版社, 2013. [6] 中华人民共和国住房和城乡建设部. 高耸结构设计标准: GB 50135—2019[S]. 北京: 中国计划出版社, 2019. [7] 孙一飞,刘庆宽,马文勇,等. 超高烟囱的风荷载试验研究[J]. 工程力学,2020,37(增1): 270-274.SUN Yifei, LIU Qingkuan, MA Wenyong, et al. The wind load of super high chimneys[J]. Engineering Mechanics, 2020, 37(S1): 270-274. [8] 李晓娜,陆煜,刘庆宽,等. 圆形截面烟囱风致干扰效应试验研究[J]. 工程力学,2015,32(增1): 159-162,166.LI Xiaona, LU Yu, LIU Qingkuan, et al. Experimental study on wind-induced interference effects of circular section chimneys[J]. Engineering Mechanics, 2015, 32(S1): 159-162,166. [9] 于昆龙,王卫华,黄汉杰,等. 新型四管自立式钢烟囱的风荷载[J]. 西南交通大学学报,2011,46(3): 421-426.YU Kunlong, WANG Weihua, HUANG Hanjie, et al. Investigations of wind loads on a new type of self-supporting four pipe steel chimney[J]. Journal of Southwest Jiaotong University, 2011, 46(3): 421-426. [10] 杨群,刘小兵,刘庆宽,等. 正品字形布置三管钢烟囱风荷载的数值模拟[J]. 工程力学,2017,34(增1): 154-158.YANG Qun, LIU Xiaobing, LIU Qingkuan, et al. Numerical simulation of wind load of three steel chimneys in regular triangular arrangement[J]. Engineering Mechanics, 2017, 34(S1): 154-158. [11] 柯世堂,王晓海,徐璐. 三管集束式钢烟囱风致响应与风振系数研究[J]. 建筑结构学报,2021,42(10): 130-138.KE Shitang, WANG Xiaohai, XU Lu. Study on wind-induced response and wind vibration coefficient of a three-tube cluster steel chimney[J]. Journal of Building Structures, 2021, 42(10): 130-138. [12] LIANG S G, YANG W, SONG J, et al. Wind-induced responses of a tall chimney by aeroelastic wind tunnel test using a continuous model[J]. Engineering Structures, 2018, 176: 871-880. doi: 10.1016/j.engstruct.2018.09.015 [13] 陈鑫,李爱群,王泳,等. 高耸钢烟囱环形TLD减振试验设计与模型修正[J]. 建筑结构学报,2015,36(1): 30-36.CHEN Xin, LI Aiqun, WANG Yong, et al. Model design and updating for experiment of ring shaped TLD control of high-rise steel chimney[J]. Journal of Building Structures, 2015, 36(1): 30-36. [14] 陈鑫,李爱群,王泳,等. 高耸钢烟囱环形TLD减振试验与数值模拟[J]. 建筑结构学报,2015,36(1): 37-43.CHEN Xin, LI Aiqun, WANG Yong, et al. Experiment and numerical simulation of ring shaped TLD control of high-rise steel chimney[J]. Journal of Building Structures, 2015, 36(1): 37-43. [15] 陈鑫,李爱群,王洪,等. 自立式高耸钢结构黏滞阻尼减振技术及其设计方法[J]. 建筑结构学报,2016,37(6): 78-84.CHEN Xin, LI Aiqun, WANG Hong, et al. Viscous damping technology and design method for self-standing high-rise steel structures[J]. Journal of Building Structures, 2016, 37(6): 78-84. [16] 陈鑫,李爱群,王泳,等. 国内外规范自立式高耸结构等效风荷载及响应比较[J]. 建筑结构学报,2014,35(4): 304-311.CHEN Xin, LI Aiqun, WANG Yong, et al. Comparative study on equivelent wind loads and dynamic responses of self-standing high-rise structures in different codes[J]. Journal of Building Structures, 2014, 35(4): 304-311. [17] BROWNJOHN J M W, CARDEN E P, GODDARD C R, et al. Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 169-179. doi: 10.1016/j.jweia.2009.10.013 [18] BELVER A V, KOO K, IBÁN A L, et al. Enhanced vortex shedding in a 183 m industrial chimney[J]. Advances in Structural Engineering, 2014, 17(7): 951-960. doi: 10.1260/1369-4332.17.7.951 [19] LUPI F, NIEMANN H J, HÖFFER R. A novel spectral method for cross-wind vibrations: application to 27 full-scale chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 353-365. doi: 10.1016/j.jweia.2017.10.014 [20] VICKERY B J, BASU R I. Across-wind vibrations of structures of circular cross-section —part I: development of a mathematical model for two-dimensional conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(1): 49-73. doi: 10.1016/0167-6105(83)90080-6 [21] RUSCHEWEYH H. Ein verfeinertes, praxisnahes Berechnungsverfahren wirbelerregter Schwingungen von schlanken Baukonstruktionen im wind; Beiträge zur Anwendung der Aeroelastik im Bauwesen[M]. Innsbruck: Universität Innsbruck, 1986. [22] ARUNACHALAM S, LAKSHMANAN N. Across-wind response of tall circular chimneys to vortex shedding[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 187-195. doi: 10.1016/j.jweia.2015.06.005 [23] ARUNACHALAM S, LAKSHMANAN N. Non-linear modelling of vortex induced lock-in effects on circular chimneys[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104201.1-104201.11. [24] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012. [25] European Committee for Standardization. Eurocode 3: design of steel structures—part 3-2: towers, masts and chimneys-chimneys: BS EN 1993-3-2[S]. Brussels: European Committee for Standardization, 2006. [26] European Committee for Standardization. Eurocode 1: actions on structures—part 1-4: general actions—wind actions: BS EN 1991-1-4[S]. Brussels: European Committee for Standardization, 2005. [27] International Committee for Industrial Construction. Revision 1-1999 CICIND model code for steel chimneys: amendment A[S]. Zurich: CICIND, 2002. [28] 刘小兵,吴倩云,姜会民,等. 串列多圆柱气动力干扰效应的试验研究[J]. 振动与冲击,2021,40(7): 37-44.LIU Xiaobing, WU Qianyun, JIANG Huimin, et al. Tests for aerodynamic force interference effect of tandem cylinders[J]. Journal of Vibration and Shock, 2021, 40(7): 37-44. [29] GIARALIS A, PETRINI F. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter[J]. Journal of Structural Engineering, 2017, 143(9): 04017127.1-04017127.11. [30] GORSKI P. Some aspects of the dynamic cross-wind response of tall industrial chimney[J]. Wind and Structures: an International Journal, 2009, 12(3): 259-279. doi: 10.12989/was.2009.12.3.259 [31] 高标,周承宗,朱庆东. 塔架式烟囱的顺风向风振响应研究[J]. 武汉大学学报(工学版),2018,51(增1): 424-429.GAO Biao, ZHOU Chengzong, ZHU Qingdong. Research on along-wind vibration response of frame steel chimney[J]. Engineering Journal of Wuhan University, 2018, 51(S1): 424-429. [32] LI S Y, LIU M, LI H X, et al. Effects of structural damping on wind-induced responses of a 243-meter-high solar tower based on a novel elastic test model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 1-11. doi: 10.1016/j.jweia.2017.10.027