• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种压缩感知测量矩阵的联合优化算法

杨柳 白朝元 范平志

杨柳, 白朝元, 范平志. 一种压缩感知测量矩阵的联合优化算法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230032
引用本文: 杨柳, 白朝元, 范平志. 一种压缩感知测量矩阵的联合优化算法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230032
YANG Liu, BAI Chaoyuan, FAN Pingzhi. Co-optimization Algorithm for Measurement Matrix of Compressive Sensing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230032
Citation: YANG Liu, BAI Chaoyuan, FAN Pingzhi. Co-optimization Algorithm for Measurement Matrix of Compressive Sensing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230032

一种压缩感知测量矩阵的联合优化算法

doi: 10.3969/j.issn.0258-2724.20230032
基金项目: 国家自然科学基金项目(62020106001)
详细信息
    作者简介:

    杨柳(1978—),女,副教授,博士,研究方向为大规模物联网多址接入技术,E-mail:yangliu@swjtu.edu.cn

    通讯作者:

    范平志(1955—),男,教授,研究方向为信息与通信工程,E-mail:pzfan@swjtu.edu.cn

  • 中图分类号: TN929.5

Co-optimization Algorithm for Measurement Matrix of Compressive Sensing

  • 摘要:

    对于压缩感知算法,其测量矩阵与稀疏基之间的相关性往往决定了信号恢复精度. 为提升大规模通信场景下压缩感知算法重构信号的性能,基于矩阵分解与等角紧框架理论对测量矩阵进行改进. 首先,基于测量矩阵和稀疏基构造字典矩阵,并进一步构造Gram矩阵,利用特征值分解降低Gram矩阵的平均相关性;然后,基于等角紧框架理论与梯度缩减理论,通过使Gram矩阵逼近等角紧框架矩阵来减小Gram矩阵非主对角线元素的最大值,从而降低测量矩阵与稀疏基之间的最大相关性;最后,以正交匹配追踪(orthogonal matching pursuit, OMP)为重构算法进行仿真验证. 仿真结果表明:相比于优化前,矩阵相关系数降低40%~50%;在信道估计与活跃用户检测中,本文在较高稀疏度下的算法错误估计数比其他优化算法降低50%以上,信道估计的均方误差相比其他矩阵提升3 dB,误码率性能提升2 dB.

     

  • 图 1  相关系数随观测维度M的变化

    Figure 1.  Variation of correlation coefficient with observed dimension M

    图 2  不同稀疏度下错误估计用户数比较

    Figure 2.  Comparison of estimation errors of user number under different sparsity

    图 3  不同稀疏度下单次重构时间比较

    Figure 3.  Comparison of single reconstruction time under different sparsity

    图 4  不同SNR下的MSE比较

    Figure 4.  Comparison of MSEs under different SNRs

    图 5  不同SNR下的BER比较

    Figure 5.  Comparison of BERs under different SNRs

    表  1  参数表

    Table  1.   Parameters

    参数名称 参数值
    $ \boldsymbol{\varPhi } $ 随机导频矩阵
    $ {\boldsymbol{\varPsi }}$ 单位矩阵
    t/次 1000
    $ \beta $ 0.01
    信道类型 随机瑞利衰落
    导频长度 100
    信号长度 256
    潜在用户数/人 30
    下载: 导出CSV
  • [1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [2] SENEL K, LARSSON E G. Grant-free massive MTC-enabled massive MIMO: a compressive sensing approach[J]. IEEE Transactions on Communications, 2018, 66(12): 6164-6175. doi: 10.1109/TCOMM.2018.2866559
    [3] ROBAEI M, AKL R, CHATAUT R, et al. Adaptive millimeter-wave channel estimation and tracking[C]//2022 24th International Conference on Advanced Communication Technology (ICACT). PyeongChang: IEEE, 2022: 23-28.
    [4] DUAN L G, YANG X Y, LI A P. WSN data compression model based on K-SVD dictionary and compressed sensing[C]//International Conference of Pioneering Computer Scientists, Engineers and Educators. Singapore: Springer, 2021: 429-442.
    [5] JIANG R K, WANG X T, CAO S, et al. Joint compressed sensing and enhanced whale optimization algorithm for pilot allocation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7: 95779-95796. doi: 10.1109/ACCESS.2019.2929305
    [6] 曾祥洲. 基于压缩感知块结构信号的稀疏表示与重构算法研究[D]. 广州: 华南理工大学,2016.
    [7] XU Q R, SHENG Z C, FANG Y, et al. Measurement matrix optimization for compressed sensing system with constructed dictionary via Takenaka-Malmquist functions[J]. Sensors, 2021, 21(4): 1229.1-1229.14.
    [8] 宋儒瑛,张朝阳. 基于分块矩阵法优化测量矩阵的研究[J]. 太原师范学院学报(自然科学版),2022,21(2): 1-7.
    [9] 魏从静. 压缩感知中测量矩阵的构造与优化研究[D]. 南京: 南京邮电大学,2016.
    [10] HE J A, WANG T, WANG C F, et al. Improved measurement matrix construction with pseudo-random sequence in compressed sensing[J]. Wireless Personal Communications, 2022, 123(4): 3003-3024. doi: 10.1007/s11277-021-09274-6
    [11] BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP.2007.4286571
    [12] DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2197-2202.
    [13] TROPP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793
    [14] 郭桂祥. 基于非凸优化方法的压缩感知SAR成像研究[D]. 南京: 南京信息工程大学,2022.
    [15] WU Q S, FU Y, ZHANG Y D, et al. Structured Bayesian compressive sensing exploiting dirichlet process priors[J]. Signal Processing, 2022, 201: 108680.1-108680.15.
    [16] WANG B C, MIR T, JIAO R C, et al. Dynamic multi-user detection based on structured compressive sensing for IoT-oriented 5G systems[C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). Seoul: IEEE, 2016: 431-434.
    [17] JIANG X H, LI N, GUO Y, et al. Sensing matrix optimization for multi-target localization using compressed sensing in wireless sensor network[J]. China Communications, 2022, 19(3): 230-244. doi: 10.23919/JCC.2022.03.017
    [18] TSILIGIANNI E, KONDI L P, KATSAGGELOS A K. Approximate equiangular tight frames for compressed sensing and CDMA applications[J]. EURASIP Journal on Applied Signal Processing, 2017, 2017(1): 66.1-66.14.
    [19] ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702. doi: 10.1109/TSP.2007.900760
    [20] SARDY S, BRUCE A G, TSENG P. Block coordinate relaxation methods for nonparametric wavelet denoising[J]. Journal of Computational and Graphical Statistics, 2000, 9(2): 361-379. doi: 10.1080/10618600.2000.10474885
    [21] WANG G, NIU M Y, FU F W. Deterministic constructions of compressed sensing matrices based on codes[J]. Cryptography and Communications, 2019, 11(4): 759-775. doi: 10.1007/s12095-018-0328-z
    [22] YI R J, CUI C, WU B, et al. A new method of measurement matrix optimization for compressed sensing based on alternating minimization[J]. Mathematics, 2021, 9(4): 329.1-329.19.
    [23] YU L F, LI G, CHANG L P. Optimizing projection matrix for compressed sensing systems[C]//2011 8th International Conference on Information, Communications & Signal Processing. Singapore: IEEE, 2011: 1-5.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-04-25
  • 网络出版日期:  2024-12-07

目录

    /

    返回文章
    返回