• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于多属性决策的一阶逻辑子句选择方法

曾国艳 徐扬 陈树伟 姜世攀

曾国艳, 徐扬, 陈树伟, 姜世攀. 基于多属性决策的一阶逻辑子句选择方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230023
引用本文: 曾国艳, 徐扬, 陈树伟, 姜世攀. 基于多属性决策的一阶逻辑子句选择方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230023
ZENG Guoyan, XU Yang, CHEN Shuwei, JIANG Shipan. First-Order Logic Clause Selection Method Based on Multi-criteria Decision Making[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230023
Citation: ZENG Guoyan, XU Yang, CHEN Shuwei, JIANG Shipan. First-Order Logic Clause Selection Method Based on Multi-criteria Decision Making[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230023

基于多属性决策的一阶逻辑子句选择方法

doi: 10.3969/j.issn.0258-2724.20230023
基金项目: 国家自然科学基金项目(61976130)
详细信息
    作者简介:

    曾国艳(1997—),女,博士研究生,研究方向为自动推理、定理机器证明,E-mail:guoyanzeng_math@163.com

    通讯作者:

    徐扬(1956—),男,教授,博士,研究方向为智能信息处理、自动推理、定理机器证明,E-mail:xuyang@home.swjtu.edu.cn

  • 中图分类号: TP311;O14

First-Order Logic Clause Selection Method Based on Multi-criteria Decision Making

  • 摘要:

    基于一阶逻辑的自动定理证明器(ATP)在知识表达和自动推理研究中占据重要地位,而启发式策略则是提升ATP性能的关键研究方向. 主流的启发式策略通常通过描述子句属性来确定属性优先级,从而选择子句,但属性优先级受人为因素影响,且评估子句耗时较长. 为此,本文基于矛盾体分离(S-CS)规则,提出一种新的多属性决策(MCDM)子句评估方法. 首先,利用熵权法对子句属性进行客观赋权;其次,结合偏好顺序结构评估法(PROMETHEE Ⅱ)对子句进行评估,得到子句的完全排序;最后,将提出的MCDM方法加入自动定理证明器CSE 1.5 (contradiction separation extension 1.5)、Vampire 4.7和Eprover (E 2.6)中,分别形成新的证明器MCDM_CSE、 MCDM_V和MCDM_E. 对MCDM_CSE测试了国际定理证明器问题库TPTP (Thousands of Problems for Theorem Provers)中一阶逻辑格式的定理,并对MCDM_V和MCDM_E测试了2022年CADE (Conference on Automated Deduction)竞赛例(一阶逻辑组). 实验表明:MCDM_CSE比CSE 1.5多证明了151个定理(来自TPTP),并且能够证明Vampire 4.7无法证明的5个定理、E 2.6无法证明的41个定理以及Prover9无法证明的293个定理;在更短的平均时间内,MCDM_V比Vampire 4.7多证明了6个定理(来自CADE 2022),MCDM_E比E 2.6多证明了8个定理.

     

  • 图 1  基于 PROMETHEE Ⅱ的候选子句选择框架

    Figure 1.  Framework diagram for candidate clause selection based on PROMETHEE Ⅱ

    图 2  基于 PROMETHEE Ⅱ的 S-CS 算法流程

    Figure 2.  Flowchart of S-CS algorithm based on PROMETHEE Ⅱ

    图 3  不同ATP在2022年CADE竞赛的CPU时间比较

    Figure 3.  Comparison of CPU time of different ATPs for the CADE 2022 competition

    表  1  MCDM_CSE和CSE 1.5在不同难度等级下证明的定理数量对比

    Table  1.   Comparison of the number of theorems proved by MCDM_CSE and CSE 1.5 at different difficulty levels

    难度等级 MCDM_CSE CSE 1.5
    [0, 0.10) 1061 1073
    [0.10,0.50) 1338 1212
    [0.50,0.60) 98 79
    [0.60,0.70) 43 39
    [0.70,0.80) 22 16
    [0.80,0.90) 13 11
    [0.90,1.00) 8 5
    1.00 3 0
    下载: 导出CSV

    表  2  MCDM_CSE证明难度大于0.90的定理所需的证明时长

    Table  2.   Time consumed by MCDM_CSE to prove theorems with difficulty greater than 0.90

    定理名称 难度等级 证明时间/s
    SEU413 + 2 0.92 26.81
    SWB088 + 1 0.97 137.78
    SWB090 + 1 0.97 126.04
    NUM736 + 4 1.00 65.49
    SYO625-1 1.00 219.51
    SYO587 + 1 1.00 218.41
    下载: 导出CSV

    表  3  对已证明定理(按难度等级)在国际知名自动定理证明器中证明数量的比较

    Table  3.   Comparison of the number of theorems (by difficulty level) proved by internationally known ATPs

    自动定理证
    明器
    难度等级
    [0,0.70) [0.70,0.80) [0.80,0.90) [0.90,1.00]
    MCDM_CSE 2540 22 13 11
    Vampire 4.7 2539 21 13 8
    E 2.6 2532 12 1 0
    Prover9 2264 13 8 8
    下载: 导出CSV

    表  4  2022年CADE竞赛的比较结果

    Table  4.   Comparative results on the CADE 2022 competition

    自动定理证明器 平均时间/s 证明个数/个
    MCDM_V 15.3 462
    Vampire 4.7 16.1 456
    MCDM_E 27.4 387
    E 2.6 31.7 380
    下载: 导出CSV
  • [1] ROBINSON J A. A machine-oriented logic based on the resolution principle[J]. Journal of the ACM, 1965, 12(1): 23-41. doi: 10.1145/321250.321253
    [2] BECKERT B, HÄHNLE R. Reasoning and verification: state of the art and current trends[J]. IEEE Intelligent Systems, 2014, 29(1): 20-29. doi: 10.1109/MIS.2014.3
    [3] HALES T, ADAMS M, BAUER G, et al. A formal proof of the Kepler conjecture[J/OL]. Forum of Mathematics, Pi, 2017, 5: 1-21. [2023-01-02]. https://arxiv.org/pdf/1501.02155.
    [4] PAVLOV V, SCHUKIN A, CHERKASOVA T. Exploring automated reasoning in first-order logic: tools, techniques and application areas[M]//Communications in Computer and Information Science. Berlin: Springer, 2013: 102-116.
    [5] XU Y, LIU J, CHEN S W, et al. Contradiction separation based dynamic multi-clause synergized automated deduction[J]. Information Sciences, 2018, 462: 93-113. doi: 10.1016/j.ins.2018.04.086
    [6] XU Y, CHEN S W, LIU J, et al. Distinctive features of the contradiction separation based dynamic automated deduction[C]//Data Science and Knowledge Engineering for Sensing Decision Support. Belfast: World Scientific, 2018: 725-732.
    [7] JAKUBŮV J, KALISZYK C. Relaxed weighted path order in theorem proving[J]. Mathematics in Computer Science, 2020, 14(3): 657-670 doi: 10.1007/s11786-020-00474-0
    [8] RAWSON M, REGER G. Old or heavy? decaying gracefully with age/weight shapes[M]//Lecture Notes in Computer Science. Cham: Springer, 2019: 462-476.
    [9] 曹锋,徐扬,陈树伟,等. 多元协同演绎在一阶逻辑ATP中的应用[J]. 西南交通大学学报,2020,55(2): 401-408,427. doi: 10.3969/j.issn.0258-2724.20180800

    CAO Feng, XU Yang, CHEN Shuwei, et al. Application of multi-clause synergized deduction in first-order logic automated theorem proving[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 401-408,427. doi: 10.3969/j.issn.0258-2724.20180800
    [10] CHEN S W, XU Y, JIANG Y, et al. Some synergized clause selection strategies for contradiction separation based automated deduction[C]//2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing: IEEE, 2017: 1-6.
    [11] HWANG C L, YOON K. Methods for multiple attribute decision making[M]//Lecture Notes in Economics and Mathematical Systems. Berlin: Springer, 1981: 58-191.
    [12] PARK J H, CHO H J, KWUN Y C. Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information[J]. Fuzzy Optimization and Decision Making, 2011, 10(3): 233-253. doi: 10.1007/s10700-011-9102-9
    [13] BRANS J P, VINCKE P. Note—a preference ranking organization method[J]. Management Science, 1985, 31(6): 647-656. doi: 10.1287/mnsc.31.6.647
    [14] BRANS J P, DE SMET Y. PROMETHEE methods[M]//HAMID F. International Series in Operations Research & Management Science. New York: Springer, 2016: 187-219.
    [15] ROBINSON J A, VORONKOV A. Handbook of automated reasoning[M]. Amsterdam: Elsevier, 2001.
    [16] LÖCHNER B. Things to know when implementing KBO[J]. Journal of Automated Reasoning, 2006, 36(4): 289-310.
    [17] TAMMET T. GKC: A reasoning system for large knowledge bases[C]//International Conference on Automated Deduction. Switzerland: Springer, 2019: 538-549.
    [18] RAWSON M, REGER G. Dynamic strategy priority: empower the strong and abandon the weak[C]// Proceedings of the 6th Workshop on Practical Aspects of Automated Reasoning. Oxford: PAAR, 2018: 58-71.
    [19] LIU P Y, XU Y, LIU J, et al. Fully reusing clause deduction algorithm based on standard contradiction separation rule[J]. Information Sciences, 2023, 622: 337-356. doi: 10.1016/j.ins.2022.11.128
    [20] 杨梦,雷博,史露娜,等. 基于标准离差法的模糊散度多阈值图像分割[J]. 计算机应用与软件,2020,37(5): 219-225. doi: 10.3969/j.issn.1000-386x.2020.05.038

    YANG Meng, LEI Bo, SHI Luna, et al. Fuzzy divergence multi-threshold image segmentation based on standard deviation method[J]. Computer Applications and Software, 2020, 37(5): 219-225. doi: 10.3969/j.issn.1000-386x.2020.05.038
    [21] 刘照德,詹秋泉,田国梁. 因子分析综合评价研究综述[J]. 统计与决策,2019,35(19): 68-73.

    LIU Zhaode, ZHAN Qiuquan, TIAN Guoliang. Research review on comprehensive evaluation of factor analysis[J]. Statistics & Decision, 2019, 35(19): 68-73.
    [22] ZHU Y X, TIAN D Z, YAN F. Effectiveness of entropy weight method in decision-making[J]. Mathematical Problems in Engineering, 2020, 2020: 3564835.1-3564835.5.
    [23] JIANG L L, WANG H, TONG A H, et al. The measurement of green finance development index and its poverty reduction effect: dynamic panel analysis based on improved entropy method[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 8851684.1-8851684.13.
    [24] ZHONG J, CAO F, WU G F, et al. Multi-clause synergized contradiction separation based first-order theorem prover—MC-SCS[C]//2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing: IEEE, 2017: 1-6.
    [25] SUTCLIFFE G, DESHARNAIS M. The CADE-28 automated theorem proving system competition–CASC-28[J]. AI Communications, 2022, 34(4): 259-276. doi: 10.3233/AIC-210235
    [26] SUTCLIFFE G. The TPTP problem library and associated infrastructure[J]. Journal of Automated Reasoning, 2017, 59(4): 483-502. doi: 10.1007/s10817-017-9407-7
    [27] KOVÁCS L, VORONKOV A. First-order theorem proving and vampire[M]//Lecture Notes in Computer Science. Berlin: Springer, 2013: 1-35.
    [28] SCHULZ S. System description: E 1.8[C]//International Conference on Logic for Programming Artificial Intelligence and Reasoning. Berlin: Springer, 2013: 735-743.
    [29] MCCUNE W. Release of Prover9[R]//Denver: Mathematics and Computer Science Division, Argonne National Laboratory, 2005.
    [30] MCCUNE W. OTTER 3.3 reference manual[J]. Office of Scientific & Technical Information Technical Reports, 2007, 11(4): 217-220.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  42
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 修回日期:  2023-06-20
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回