• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

冷弯不等肢卷边角钢轴压试验及承载力设计方法

姚行友 胡成立 刘亚菲 郭彦利

姚行友, 胡成立, 刘亚菲, 郭彦利. 冷弯不等肢卷边角钢轴压试验及承载力设计方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230010
引用本文: 姚行友, 胡成立, 刘亚菲, 郭彦利. 冷弯不等肢卷边角钢轴压试验及承载力设计方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230010
YAO Xingyou, HU Chengli, LIU Yafei, GUO Yanli. Axial Compression Test and Bearing Capacity Design Method of Cold-Formed Steel with Unequal-Leg Lipped Angles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230010
Citation: YAO Xingyou, HU Chengli, LIU Yafei, GUO Yanli. Axial Compression Test and Bearing Capacity Design Method of Cold-Formed Steel with Unequal-Leg Lipped Angles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230010

冷弯不等肢卷边角钢轴压试验及承载力设计方法

doi: 10.3969/j.issn.0258-2724.20230010
基金项目: 国家自然科学基金项目(51868049);江西省自然科学基金重点项目(20242BAB26074)
详细信息
    作者简介:

    姚行友(1978—),男,教授,研究方向为冷弯型钢结构,E-mail:yaoxingyoujd@163.com

  • 中图分类号: TU392.1

Axial Compression Test and Bearing Capacity Design Method of Cold-Formed Steel with Unequal-Leg Lipped Angles

  • 摘要:

    为研究轴心受压冷弯薄壁不等肢卷边角钢屈曲性能和承载力设计方法,采用试验和有限元程序分析其屈曲性能和极限承载力,并基于直接强度法提出承载力设计建议方法. 首先,开展32根不同截面、长细比和宽厚比的冷弯薄壁不等肢卷边角钢轴压试验;随后,采用ABAQUS有限元软件对冷弯薄壁不等肢卷边角钢在不同宽厚比、肢宽比、长细比等条件下的屈曲性能和承载力进行参数化分析;最后,基于试验和有限元分析结果提出轴心受压冷弯薄壁不等肢卷边角钢构件承载力计算的修正直接强度法公式. 结果表明:宽厚比较小,试件易发生弯扭屈曲,宽厚比较大,试件易发生局部屈曲(或弯扭)和局部相关屈曲;构件极限承载力随长细比增大而降低,随着宽厚比的增大,承载力增长趋势逐渐减缓;提出的修正直接强度法计算轴心受压冷弯薄壁不等肢卷边角钢构件承载力的可靠度指标均值均大于3.2,建议方法准确且安全可靠.

     

  • 图 1  不等肢卷边角钢截面

    Figure 1.  Section of steel with unequal-leg lipped angles

    图 2  应力-应变曲线

    Figure 2.  Stress–strain curves

    图 3  纵向初始缺陷量测位置

    Figure 3.  Measuring locations of longitudinal initial defect

    图 4  试件初始缺陷

    Figure 4.  Initial defect of specimens

    图 5  试验装置

    Figure 5.  Test setup

    图 6  位移计布置

    Figure 6.  Layout of displacement meters

    图 7  长度为400 mm的角钢柱屈曲模式

    Figure 7.  Buckling mode of steel angle with length of 400 mm

    图 8  长度为900、1500 mm的角钢柱屈曲模式

    Figure 8.  Buckling mode of steel angle with lengths of 900 mm and 1 500 mm

    图 9  长度为2100 mm的角钢柱屈曲模式

    Figure 9.  Buckling mode of steel angle with length of 2 100 mm

    图 10  荷载-位移曲线

    Figure 10.  Load-displacement curves

    图 11  有限元分析模型

    Figure 11.  Finite element analysis model

    图 12  有限元分析一阶屈曲模态

    Figure 12.  First-order buckling mode of finite element analysis

    图 13  试验与有限元分析屈曲模式对比

    Figure 13.  Comparison of buckling modes between test and finite element analysis

    图 14  试验与有限元分析荷载-位移曲线对比

    Figure 14.  Comparison of load-displacement curves between test and finite element analysis

    图 15  极限承载力和长细比关系曲线

    Figure 15.  Relationship between ultimate bearing capacity and slenderness ratio

    图 16  试验和有限元分析角钢屈曲模式和承载力对比

    Figure 16.  Comparisons of buckling modes and bearing capacities of steel angles between test and finite element analysis

    表  1  试件名义几何尺寸

    Table  1.   Nominal geometric dimension of specimens

    试件编号 bl/mm b2/mm al/mm a2/mm t/mm b1/t b2/t
    LL4030 40 30 15 15 2 20 15
    LL6040 60 40 20 20 2 30 20
    LL9060 90 60 20 20 2 45 30
    LL12080 120 80 24 24 2 60 40
    下载: 导出CSV

    表  2  试件实测几何尺寸

    Table  2.   Measured geometric dimensions of specimens

    试件编号 bl/mm b2/mm al/mm a2/mm t/mm 长度 L/mm 长细比 λ
    LL4030-400-1 42.13 31.43 15.97 15.54 1.98 400.00 39.19
    LL4030-400-2 41.51 31.45 15.56 16.34 1.98 399.27 39.88
    LL4030-900-1 42.00 31.61 15.96 14.84 1.99 900.00 87.28
    LL4030-900-2 42.25 31.05 15.14 15.79 2.00 900.00 89.45
    LL4030-1500-1 41.98 31.48 15.99 15.28 1.97 1498.37 147.14
    LL4030-1500-2 41.93 31.42 15.93 15.95 2.00 1499.33 146.65
    LL4030-2100-1 42.07 31.32 15.60 15.96 1.98 2101.17 206.51
    LL4030-2100-2 42.20 31.59 15.52 15.66 1.98 2101.27 206.93
    LL6040-400-1 61.68 41.48 21.63 19.48 1.98 400.00 29.54
    LL6040-400-2 61.35 41.52 21.17 21.00 1.97 399.00 29.40
    LL6040-900-1 62.05 41.60 21.45 19.37 1.98 900.00 66.46
    LL6040-900-2 62.16 41.63 21.54 19.61 2.09 900.00 68.25
    LL6040-1500-1 62.10 41.64 21.06 20.48 1.99 1499.43 110.40
    LL6040-1500-2 61.80 41.76 21.35 20.98 2.07 1499.27 111.54
    LL6040-2100-1 62.24 41.37 21.32 19.86 1.91 2101.10 152.65
    LL6040-2100-2 61.44 41.91 20.92 20.47 1.98 2100.00 154.12
    LL9060-400-1 91.80 61.41 20.25 20.02 1.97 400.00 22.15
    LL9060-400-2 91.92 61.31 20.12 20.50 1.97 399.50 22.16
    LL9060-900-1 91.51 61.43 19.90 21.05 1.99 900.00 49.79
    LL9060-900-2 91.90 61.89 20.67 20.19 2.00 900.00 49.39
    LL9060-1500-1 91.50 62.59 20.51 20.88 2.00 1498.90 81.56
    LL9060-1500-2 91.43 62.42 21.08 19.88 1.97 1499.10 81.69
    LL9060-2100-1 92.07 61.52 20.99 19.69 1.98 2100.00 115.66
    LL9060-2100-2 91.60 61.94 21.83 21.01 2.00 2101.03 113.94
    LL12080-400-1 121.53 81.77 24.92 23.98 1.98 400.00 16.95
    LL12080-400-2 121.30 81.82 24.19 24.22 1.98 399.27 17.00
    LL12080-900-1 122.30 81.71 25.11 24.05 1.97 900.00 38.10
    LL12080-900-2 121.87 81.95 23.68 24.90 1.97 900.00 38.23
    LL12080-1500-1 121.97 82.20 24.71 24.17 2.00 1498.22 63.34
    LL12080-1500-2 122.48 81.87 24.95 24.70 1.97 1499.13 63.33
    LL12080-2100-1 122.79 81.89 23.76 24.03 1.98 2101.17 89.38
    LL12080-2100-2 121.04 82.24 24.71 24.49 1.97 2100.14 88.61
    下载: 导出CSV

    表  3  试验和有限元分析角钢屈曲模式和承载力对比

    Table  3.   Comparisons of buckling modes and bearing capacities of steel angles between test and finite element analysis

    试件编号 屈曲模式 ΔLmax ΔGmax Pt PFE PD PMD PY Pt/PY Pt/ PFE Pt/ PD Pt/PMD
    试验 有限元 一阶模态
    LL4030-400-1 FT FT F 0.49 0.28 79.66 83.17 83.77 74.38 72.51 1.0986 0.9578 0.9509 1.0710
    LL4030-400-2 FT FT F 0.41 0.34 79.38 82.66 83.67 73.51 73.41 1.0813 0.9603 0.9488 1.0799
    LL4030-900-1 FT FT F 1.30 0.83 50.68 53.93 56.47 50.71 27.68 1.8312 0.9397 0.8974 0.9995
    LL4030-900-2 FT FT F 1.54 0.77 52.72 54.70 56.90 50.97 27.97 1.8852 0.9638 0.9265 1.0342
    LL4030-1500-1 FT FT F 1.30 0.38 40.70 40.93 40.36 42.15 23.01 1.7689 0.9944 1.0085 0.9655
    LL4030-1500-2 FT FT F 1.14 0.17 40.98 41.52 41.89 43.75 23.88 1.7159 0.9869 0.9783 0.9366
    LL4030-2100-1 FT FT F 1.84 0.08 30.52 31.19 24.48 25.57 13.96 2.1867 0.9786 1.2467 1.1936
    LL4030-2100-2 FT FT F 1.10 0.09 29.26 31.35 24.50 25.59 13.97 2.0948 0.9335 1.2343 1.1434
    LL6040-400-1 L L L 0.67 0.46 103.70 105.82 102.94 95.81 119.12 0.8706 0.9800 1.0074 1.0824
    LL6040-400-2 L L L 0.75 0.31 102.46 105.26 105.33 96.41 121.73 0.8417 0.9734 0.9728 1.0628
    LL6040-900-1 FT FT F 1.08 0.63 83.69 85.39 94.17 76.27 52.34 1.5989 0.9800 0.9886 1.0973
    LL6040-900-2 FT FT F 1.17 0.74 83.62 84.70 98.45 80.28 54.25 1.5414 0.9872 0.9494 1.0416
    LL6040-1500-1 FT FT F 1.15 0.60 59.96 61.98 74.21 61.37 42.31 1.4172 0.9673 0.9480 0.9769
    LL6040-1500-2 FT FT F 1.42 0.43 60.82 63.31 78.23 64.30 44.60 1.3638 0.9607 0.9775 0.9459
    LL6040-2100-1 FT FT F 1.17 0.24 48.66 50.69 41.59 43.44 23.71 2.0519 0.9600 1.1699 1.1201
    LL6040-2100-2 FT FT F 1.42 1.08 49.94 50.96 42.99 44.90 24.51 2.0376 0.9800 1.1617 1.1122
    LL9060-400-1 L L L 0.99 0.35 126.76 129.35 104.56 124.03 153.51 0.8257 0.9800 1.2123 1.0220
    LL9060-400-2 L L L 0.57 0.57 125.71 129.60 106.03 124.39 155.32 0.8094 0.9700 1.1855 1.0106
    LL9060-900-1 FT + L FT + L L 1.12 0.71 94.42 96.00 108.68 101.84 68.10 1.3865 0.9835 0.9688 0.9271
    LL9060-900-2 FT + L FT + L L 1.02 0.92 95.60 97.20 107.99 102.07 67.07 1.4253 0.9835 0.9853 0.9366
    LL9060-1500-1 FT + L FT + L L 0.79 0.71 77.34 80.36 90.86 94.90 51.80 1.4929 0.9625 0.9512 0.8149
    LL9060-1500-2 FT + L FT + L L 0.88 0.83 77.04 78.87 85.54 89.34 48.77 1.5797 0.9768 0.9006 0.8623
    LL9060-2100-1 D D F 1.22 0.90 59.95 61.37 48.74 50.90 27.79 2.1574 0.9768 1.2300 1.1776
    LL9060-2100-2 D D F 1.08 0.77 61.51 63.42 54.77 57.20 31.22 1.9701 0.9700 1.2232 1.0754
    LL12080-400-1 L L L 0.59 0.22 147.54 150.67 117.71 146.76 224.28 0.6578 0.9792 1.2535 1.0053
    LL12080-400-2 L L L 0.58 0.14 146.78 150.41 117.29 146.49 223.06 0.6580 0.9759 1.2515 1.0020
    LL12080-900-1 FT + L FT + L L 1.20 0.56 136.59 138.37 117.55 118.57 105.70 1.2923 0.9872 1.1620 1.1520
    LL12080-900-2 FT + L FT + L L 1.52 1.11 131.36 138.86 118.35 118.60 106.10 1.2380 0.9460 1.1099 1.1075
    LL12080-1500-1 FT + L FT + L L 1.20 1.56 97.14 98.99 116.57 104.35 81.31 1.1948 0.9813 0.8334 0.9309
    LL12080-1500-2 FT + L FT + L L 1.52 1.11 98.56 98.19 116.67 102.58 83.41 1.1817 1.0038 0.8447 0.9608
    LL12080-2100-1 FT + L FT + L L 1.44 1.42 85.43 85.91 73.43 76.89 41.97 2.0354 0.9948 1.2634 1.1110
    LL12080-2100-2 FT + L FT + L L 1.45 1.54 85.82 86.48 76.31 80.96 44.19 1.9419 0.9926 1.2246 1.0600
    均 值 1.4760 0.9741 1.1246 1.0318
    方 差 0.2060 0.0002 0.0227 0.0077
    变异系数 0.1395 0.0002 0.0201 0.0074
    下载: 导出CSV

    表  4  冷弯薄壁型不等肢卷边角钢轴压构件可靠指标

    Table  4.   Reliability indexes of CFTWS with unequal-leg lipped angles under axial compression

    类型 ρ2 组合形式 ρ1=0.5 ρ1=1.0 ρ1=2.0 ρ1=3.0 可靠指标平均值
    办公楼 0 1.3G + 1.5L1 4.518 4.467 4.442 4.403 4.457
    0.5 1.3G + 0.9 × 1.5(L1 + W 4.306 4.298 4.253 4.198 4.264
    1.0 1.3G + 0.9 × 1.5(L1 + W 4.178 4.161 4.102 4.087 4.132
    2.0 1.3G + 0.9 × 1.5(L1 + W 4.096 4.011 3.918 3.824 3.962
    3.0 1.3G + 0.9 × 1.5(L1 + W 3.954 3.898 3.837 3.763 3.863
    4.0 1.3G + 0.9 × 1.5(L1 + W 3.781 3.675 3.621 3.601 3.670
    住宅 0 1.3G + 1.5L2 4.924 4.869 4.841 4.799 4.858
    0.5 1.3G + 0.9 × 1.5(L2 + W 4.693 4.684 4.635 4.575 4.647
    1.0 1.3G + 0.9 × 1.5(L2 + W 4.554 4.535 4.471 4.454 4.503
    2.0 1.3G + 0.9 × 1.5(L2 + W 4.464 4.372 4.270 4.168 4.318
    3.0 1.3G + 0.9 × 1.5(L2 + W 4.309 4.248 4.182 4.101 4.210
    4.0 1.3G + 0.9 × 1.5(L2 + W 4.121 4.005 3.947 3.925 3.999
      注:ρ1 为活荷载标准值与风荷载标准值之和与恒荷载标准值的比值,ρ2 为风荷载标准值与活荷载标准值的比值.
    下载: 导出CSV
  • [1] 陈明,鲁卫波,武志远,等. 双肢冷弯C型钢蒙古包刚架的平面内稳定性[J]. 西南交通大学学报,2022,57(1):215-222.

    CHEN Ming, LU Weibo, WU Zhiyuan,et al. Investigation on in-plane stability of double-limb cold-formed C-shaped steel rigid frame of yurt[J]. Journal of Southwest Jiaotong University, 2022, 57(1):215-222.
    [2] ADLURI S M R, MADUGULA M K S. Flexural buckling of steel angles: experimental investigation[J]. Journal of Structural Engineering, 1996, 122(3): 309-317. doi: 10.1061/(ASCE)0733-9445(1996)122:3(309)
    [3] DINIS P B, CAMOTIM D, SILVESTRE N. On the mechanics of thin-walled angle column instability[J]. Thin-Walled Structures, 2012, 52: 80-89. doi: 10.1016/j.tws.2011.12.007
    [4] American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members: AISI S100-16[S]. Washington D. C.: American Ir-on and Steel Institute, 2016.
    [5] YOUNG B. Tests and design of fixed-ended cold-formed steel plain angle columns[J]. Journal of Structural Engineering, 2004, 130(12): 1931-1940. doi: 10.1061/(ASCE)0733-9445(2004)130:12(1931)
    [6] DE BARROS CHODRAUI G M, SHIFFERAW Y, MALITE M, et al, On the stability of cold-formed steel angles undercompression[J]. Rev Esc Minas, 2007, 60(2): 355-363.
    [7] SILVESTRE N, DINIS P B, CAMOTIM D. Developments on the design of cold-formed steel angles[J]. Journal of Structural Engineering, 2013, 139(5): 680-694. doi: 10.1061/(ASCE)ST.1943-541X.0000670
    [8] ELLOBODY E, YOUNG B. Behavior of cold-formed steel plain angle columns[J]. Journal of Structural Engineering, 2005, 131(3): 457-466. doi: 10.1061/(ASCE)0733-9445(2005)131:3(457)
    [9] YOUNG B, ELLOBODY E. Buckling analysis of cold-formed steel lipped angle columns[J]. Journal of Structural Engineering, 2005, 131(10): 1570-1579. doi: 10.1061/(ASCE)0733-9445(2005)131:10(1570)
    [10] YOUNG B, CHEN J. Column tests of cold-formed steel non-symmetric lipped angle sections[J]. Journal of Constructional Steel Research, 2008, 64(7): 808-815.
    [11] SHIFFERAW Y, SCHAFER B W. Cold-formed steel lipped and plain angle columns with fixed ends[J]. Thin-Walled Structures, 2014, 80: 142-152. doi: 10.1016/j.tws.2014.03.001
    [12] ZHANG L L, WANG F Y, LIANG Y T, et al. Press-braked S690 high strength steel equal-leg angle and plain channel section stub columns: testing, numerical simulation and design[J]. Engineering Structures, 2019, 201: 109764.1-109764.12. doi: 10.1016/j.engstruct.2019.109764
    [13] 姚行友,胡成立,聂泽谕,等. 冷弯不等肢复杂卷边角钢轴压试验及承载力设计方法[J]. 建筑钢结构进展,2024,26(2): 34-44.

    YAO Xingyou1,HU Chengli,NIE Zeyu,et al. Experiment and design method of cold-formed thin-walled steel unequal-legged complex-lipped angles under axial Compressio[J]. Progress in Steel Building Structures, 2024, 26(9): 34-44.
    [14] 周宜松. 复杂卷边不等边角形截面冷弯薄壁型钢柱轴压稳定承载力研究[D]. 郑州:郑州大学,2020.
    [15] 徐步洲. 双卷边不等肢角钢冷弯薄壁型钢柱轴压稳定承载力研究[D]. 西安:西安建筑科技大学,2017.
    [16] 中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. 冷弯薄壁型钢结构技术规范:GB 50018—2002[S]. 北京:中国计划出版社,2002.
    [17] 国家市场监督管理总局,国家标准化管理委员会. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021.
    [18] YOUNG B. Tests and design of fixed-ended cold-formed steel plain angle columns[J]. Journal of Structural Engineering, 2004, 130(12): 1931-1940. doi: 10.1061/(ASCE)0733-9445(2004)130:12(1931)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  33
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-05-09
  • 网络出版日期:  2024-08-05

目录

    /

    返回文章
    返回