Crossing Power Governance Approach of Continuous Power Supply System in Electrified Railway
-
摘要:
为消除牵引供电系统穿越功率的影响,同时兼顾再生制动能量利用,提出一种穿越功率治理的新方法. 首先,结合贯通供电系统结构推导不同工况下的功率潮流,分析穿越功率检测方法;其次,在单相组合式同相牵引变电所的基础上,设置功率转移与能量储存单元,分析改进后系统的工作机制;然后,通过功率分配与负序满意补偿的上层控制策略和变流器控制的底层控制策略相结合,提出穿越功率治理协同控制策略;最后,以某线路试验数据为例计算穿越功率大小,评估治理措施的经济性,同时通过仿真验证所提方案的正确性和有效性. 研究结果表明:本文所提出的系统及其控制策略能够有效消纳穿越功率和再生制动能量,在考虑牵引变电所和牵引网损耗的情况下,功率转移与能量储存单元的穿越功率利用率在70%以上,具有良好的经济性和可行性.
Abstract:A novel crossing power governance approach was proposed to mitigate the effects of crossing power in the traction power supply system while taking regenerative braking energy utilization into account. First, the power flow under different operating conditions was derived based on the structure of the continuous power supply system, and the method for detecting crossing power was analyzed. Second, a power transfer and energy storage unit was set using the single-phase combined co-phase traction substation, and the working mechanism of the improved system was analyzed. Then, a cooperative control strategy of crossing power governance was proposed by combining the upper control strategy of power distribution and negative sequence satisfactory compensation with the lower control strategy of converter control. Finally, the amount of crossing power was calculated using the experimental data of a railway line, and the cost-effectiveness of the governance measure was evaluated. In addition, the accuracy and efficacy of the proposed scheme were verified by simulation. The research results show that the proposed system and its control strategy can effectively mitigate the crossing power and regenerative braking energy, with the utilization rate of the crossing power of the power transfer and energy storage unit exceeding 70% in the case of traction substation and traction network loss. The system is highly economical and feasible.
-
表 1 典型故障类型
Table 1. Typical failure types
故障所 故障装置 再生制动/穿越功率 变电所 1 故障 ESS PLS消纳为主,未消纳部分馈送电网;不影响穿越功率的消纳 PLS ESS消纳为主,未消纳部分馈送电网;不影响穿越功率的消纳 PTESU 馈送电网;不影响穿越功率的消纳 变电所 2 故障/变电
所 1、2 同时故障ESS PLS消纳为主,未消纳部分馈送电网 PLS ESS消纳为主,未消纳部分馈送电网 PTESU 馈送电网 表 2 功率分配关系
Table 2. Relationship of power distribution
实时功率 情况 1 情况 2 情况 3 情况 4 情况 5 情况 6 $ {P_{\rm{S}}} $ $ - \left( {\left| {{P_{\rm{L}}}} \right| - {P_{{\rm{PLS\_thshd}}}} - {P_{{\rm{ESS\_thshd}}}}} \right) $ 0 $ - \left( {\left| {{P_{\rm{L}}}} \right| - {P_{{\rm{PLS\_thshd}}}}} \right) $ 0 ${P_{\rm{L}}}$ ${P_{\rm{L}}} - {P_{{\rm{ESS}}}}$ $ {P_{{\rm{PLS}}}} $ $ - {P_{{\rm{PLS\_thshd}}}}$ $ - {P_{{\rm{PLS\_thshd}}}}$ $ - {P_{{\rm{PLS\_thshd}}}}$ $ - \left| {{P_{\rm{L}}}} \right|$ 0 0 $ {P_{{\rm{ESS}}}} $ $ - {P_{{\rm{ESS\_thshd}}}} $ $ - \left( {\left| {{P_{\rm{L}}}} \right| - {P_{{\rm{PLS\_thshd}}}}} \right) $ 0 0 0 $ {P_{{\rm{ESS}}}} $ 表 3 实测数据
Table 3. Measured data
工况 电流/A 电压/kV 有功功率/kW 变电所 1 合环前 66.50 28 0 变电所 1 合环后 144.50 28 1946 变电所 2 合环前 73.25 28 704 变电所 2 合环后 49.25 28 − 1299 表 4 成本与收益
Table 4. Costs and benefits
万元 是否包含
储能装置运营
年份/年累计成本
和运维费累计节省
电费盈亏 含储能 1 1000 327.47 −672.53 2 1200 654.94 −545.06 3 1400 982.41 −417.59 4 1600 1309.88 −290.12 5 1800 1637.35 −162.65 6 2000 1964.82 −35.18 7 2200 2292.29 92.29 不含储能 1 800 327.47 −472.53 2 1000 654.94 −345.06 3 1200 982.41 −217.59 4 1400 1309.88 −90.12 5 1600 1637.35 37.35 表 5 系统参数
Table 5. System parameters
参数 数值 电源电压等级/kV 110 三相输电线路/km 50 牵引变电所进线LA、LB/km 10、10 储能装置充放电功率/MW 2 10 kV动力照明系统/MW 2 牵引网长度/km 40 -
[1] 曹建猷. 电气化铁道供电系统[M]. 北京:中国铁道出版社,1983. [2] 郭育华,连级三,张昆仑. 自动过分相对电力机车的影响[J]. 机车电传动,2000(2): 13-15. doi: 10.3969/j.issn.1000-128X.2000.02.004GUO Yuhua, LIAN Jisan, ZHANG Kunlun. Influence of auto-passing of neutral section on electric locomotive[J]. Electric Drive for Locomotives, 2000(2): 13-15. doi: 10.3969/j.issn.1000-128X.2000.02.004 [3] 李群湛,王辉,解绍锋. 电气化铁路双边供电技术应用研究[J]. 电气化铁道,2021,32(6): 1-4.LI Qunzhan, WANG Hui, XIE Shaofeng. Discussion on application of bilateral power supply tech-nology on electrified railway[J]. Electric Railway, 2021, 32(6): 1-4. [4] 李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报,2010,32(4): 119-124. doi: 10.3969/j.issn.1001-8360.2010.04.022LI Qunzhan. On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. doi: 10.3969/j.issn.1001-8360.2010.04.022 [5] 余涵. 电气化铁路双边供电及其对电力系统的影响与对策研究[D]. 成都: 西南交通大学,2017. [6] 李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001LI Qunzhan. On new generation traction power supply system and its key technologies for electrification railway[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001 [7] 辛成山,张美娟. 交流电气化铁道双边供电研究[J]. 电气化铁道,1998(3): 6-11. [8] 周志成,马庆安. 交流牵引供电系统双边供电均衡电流的预估方法[J]. 机车电传动,2020(4): 94-97.ZHOU Zhicheng, MA Qing’an. Prediction of balanced current in bilaterally-fed AC traction power supply system[J]. Electric Drive for Locomotives, 2020(4): 94-97. [9] 邓云川,宋梦容,林宗良. 混合电源模式双边供电系统短路电流计算方法研究[J]. 电气化铁道,2021,32(6): 12-20.DENG Yunchuan, SONG Mengrong, LIN Zongliang. Studies on calculation methods of short circuit current of bilateral power supply system under mixed power source mode[J]. Electric Railway, 2021, 32(6): 12-20. [10] 晏寒,解绍锋,王辉,等. 平行双边供电系统数学模型研究[J]. 电气化铁道,2021,32(6): 21-26.YAN Han, XIE Shaofeng, WANG Hui, et al. Study on mathematical model of parallel bilateral power supply system[J]. Electric Railway, 2021, 32(6): 21-26. [11] 周志成. 基于树形双边供电的重载铁路贯通同相供电方案[J]. 铁道科学与工程学报,2020,17(3): 722-731.ZHOU Zhicheng. Cophase connected power supply scheme of heavy haul railway based on tree bilateral power supply[J]. Journal of Railway Science and Engineering, 2020, 17(3): 722-731. [12] WANG F, WU M L, ZHANG S S. Research on bilateral power supply technology of electrified railway[C]//2020 Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu: IEEE, 2020: 311-317. [13] 谭磊. 牵引供电系统均衡电流及控制技术研究[D]. 成都: 西南交通大学,2017. [14] CHOI K H. A phase-shifter for regulating circulating power flow in a parallel-feeding AC traction power system[J]. Journal of Electrical Engineering and Technology, 2014, 9(4): 1137-1144. doi: 10.5370/JEET.2014.9.4.1137 [15] 张丽艳,韩笃硕,王辉,等. 牵引变电所群贯通供电系统负序补偿模型及控制策略[J]. 电力系统自动化,2021,45(22): 146-156.ZHANG Liyan, HAN Dushuo, WANG Hui, et al. Negative sequence compensation model and control strategy for interconnected power supply system of traction substation group[J]. Automation of Electric Power Systems, 2021, 45(22): 146-156. [16] 曾正,赵荣祥,杨欢. 柔性并网逆变器控制技术[M]. 北京: 科学出版社,2020. [17] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 电化学储能系统储能变流器技术规范:GB/T 34120—2017[S]. 北京: 中国标准出版社,2017. [18] 黄小红,赵艺,李群湛,等. 电气化铁路同相储能供电技术[J]. 西南交通大学学报,2020,55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083HUANG Xiaohong, ZHAO Yi, LI Qunzhan, et al. Co-phase traction power supply and energy storage technology for electrified railway[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083 [19] LIBICH J, MÁCA J, VONDRÁK J, et al. Supercapacitors: properties and applications[J]. Journal of Energy Storage, 2018, 17: 224-227. doi: 10.1016/j.est.2018.03.012 [20] LIU Y L, CHEN M W, LU S F, et al. Optimized sizing and scheduling of hybrid energy storage systems for high-speed railway traction substations[J]. Energies, 2018, 11(9): 2199.1-2199.29.