• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

改进型悬浮架系统的动力学特性和性能评估

张明亮 杨新梦 张连朋 李明远 刘丽茹

张明亮, 杨新梦, 张连朋, 李明远, 刘丽茹. 改进型悬浮架系统的动力学特性和性能评估[J]. 西南交通大学学报, 2023, 58(4): 827-835. doi: 10.3969/j.issn.0258-2724.20220885
引用本文: 张明亮, 杨新梦, 张连朋, 李明远, 刘丽茹. 改进型悬浮架系统的动力学特性和性能评估[J]. 西南交通大学学报, 2023, 58(4): 827-835. doi: 10.3969/j.issn.0258-2724.20220885
ZHANG Mingliang, YANG Xinmeng, ZHANG Lianpeng, LI Mingyuan, LIU Liru. Dynamic Characteristics and Performance Assessment of Improved Suspension Frame System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 827-835. doi: 10.3969/j.issn.0258-2724.20220885
Citation: ZHANG Mingliang, YANG Xinmeng, ZHANG Lianpeng, LI Mingyuan, LIU Liru. Dynamic Characteristics and Performance Assessment of Improved Suspension Frame System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 827-835. doi: 10.3969/j.issn.0258-2724.20220885

改进型悬浮架系统的动力学特性和性能评估

doi: 10.3969/j.issn.0258-2724.20220885
基金项目: 国家自然科学基金(52205064);河北省高等学校科学技术研究项目(ZD2022064)
详细信息
    作者简介:

    张明亮(1984—),男,副教授,博士,研究方向为磁悬浮技术和车辆动力学,E-mail:zmlhit@126.com

  • 中图分类号: U266.4

Dynamic Characteristics and Performance Assessment of Improved Suspension Frame System

  • 摘要:

    为了增大高温超导钉扎磁悬浮列车的悬浮力和提升安全性,提出了抱轨式改进型悬浮架系统,首先,采用等效处理方法计算了高温超导块材阵列和永磁轨道之间的悬浮力,并利用悬浮力实验装置测量两者的悬浮力,实验验证了等效处理方法的正确性;其次,基于等效处理方法得到改进型悬浮架系统的悬浮力,利用悬浮力和悬浮间隙的关系建立了单个改进型悬浮架本体在轨道不平顺简谐激励下的动力学模型,进一步基于线性微分方程理论推导得到简谐激励下的幅频方程;最后,研究了运行速度和阻尼对稳态振幅的影响,得到阻尼在最高运行速度下应取的范围. 研究结果表明:在质量、刚度、轨道不平顺波长和幅值一定的情况下,稳态振幅的大小取决于运行速度和阻尼,且稳态振幅随着运行速度的增大而增大,随着阻尼的减小而增大;以磁悬浮安全性指标为约束,在最高运行速度600 km/h情况下阻尼应大于6905 Ns/m.

     

  • 图 1  高温超导磁通钉扎效应示意

    Figure 1.  High-temperature superconducting flux pinned effect

    图 2  包含已有悬浮架系统的高温超导钉扎磁悬浮列车主要组成

    Figure 2.  Components of high-temperature superconducting pinned maglev train with current suspension frame system

    图 3  包含改进型悬浮架系统的高温超导钉扎磁悬浮列车主要组成

    Figure 3.  Components of high-temperature superconducting pinned maglev train with improved suspension frame system

    图 4  悬浮力实验装置

    Figure 4.  Test device of levitation force

    图 5  悬浮力实验装置测试原理示意

    Figure 5.  Principle of levitation force test device

    图 6  永磁轨道实物

    Figure 6.  Permanent magnet guideway

    图 7  永磁轨道尺寸和磁化方向

    Figure 7.  Size and magnetization direction of permanent magnet guideway

    图 8  冻结镜像模型示意

    Figure 8.  Frozen-image model

    图 9  悬浮力和悬浮间隙的关系

    Figure 9.  Relationship between levitation force and levitation gap

    图 10  大永磁轨道和标准高温超导块材阵列的悬浮力

    Figure 10.  Levitation force between large permanent magnet guideway and standard high-temperature superconductor array

    图 11  改进型悬浮架系统和已有悬浮架系统的悬浮力对比关系

    Figure 11.  Comparison between levitation forces of improved suspension frame system and current suspension frame system

    图 12  改进型悬浮架系统的垂向力学模型

    Figure 12.  Vertical force model of improved suspension frame system

    图 13  数值解和解析解的幅频响应对比结果

    Figure 13.  Comparison of numerical and analytical amplitude-frequency responses

    图 14  稳态振幅与阻尼和运行速度的关系

    Figure 14.  Relationship between steady-state amplitude and damping and running velocity

    图 15  临界速度和阻尼系数的关系

    Figure 15.  Relationship between critical velocity and damping coefficient

    图 16  稳态振幅在小阻尼下的变化规律

    Figure 16.  Steady-state amplitude under small damping

    图 17  稳态振幅在大阻尼下的变化规律

    Figure 17.  Steady-state amplitude under large damping

    图 18  稳态振幅在全阻尼下的变化规律

    Figure 18.  Steady-state amplitude under panoramic damping

    图 19  高速时不同阻尼下稳态响应

    Figure 19.  Steady-state responses under different damping at high velocity

  • [1] WANG J S, WANG S Y, ZENG Y W, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world[J]. Physica C: Superconductivity, 2002, 378/379/380/381: 809-814.
    [2] 肖玲,任洪涛,焦玉磊,等. YBCO超导体的磁悬浮力及其测量[J]. 低温物理学报,1999,21(4): 317-320.

    XIAO Ling, REN Hongtao, JIAO Yulei, et al. Magnetic levitation force of YBCO superconductor and its measurement[J]. Low Temperature Physical Letters, 1999, 21(4): 317-320.
    [3] LIU W, WANG J S, LIAO X L, et al. Influence of the trapped field on the levitation performance of the magnetized bulk high-Tc superconductor[J]. Journal of Superconductivity and Novel Magnetism, 2011, 24(5): 1563-1569. doi: 10.1007/s10948-010-1058-4
    [4] 闫兆盈,刘坤,杨文姣,等. 高温超导体在强磁外场下的磁悬浮性能仿真研究[J]. 低温物理学报,2018,40(4): 46-50.

    YAN Zhaoying, LIU Kun, YANG Wenjiao, et al. Numerical studies of magnetic levitation performance of high temperature superconductor in strong magnetic field[J]. Low Temperature Physical Letters, 2018, 40(4): 46-50.
    [5] 吴爽,方进. 永磁体尺寸对高温超导磁悬浮力的影响分析[J]. 低温与超导,2018,46(7): 38-42.

    WU Shuang, FANG Jin. Analysis of the influence of permanent magnet size on high temperature superconducting magnetic suspension force[J]. Cryogenics & Superconductivity, 2018, 46(7): 38-42.
    [6] 伊建辉,孟范鹏,姜衍猛,等. 高温超导磁悬浮列车静态悬浮特性研究[J]. 低温工程,2019(6): 56-61.

    YI Jianhui, MENG Fanpeng, JIANG Yanmeng, et al. Study on static suspension characteristics of high temperature superconducting maglev train[J]. Cryogenics, 2019(6): 56-61.
    [7] 张明亮,李明远,刘鹏飞,等. 面向高温超导钉扎磁悬浮列车悬浮特性研究[J]. 中国机械工程,2022,33(22): 2764-2771.

    ZHANG Mingliang, LI Mingyuan, LIU Pengfei, et al. Study on levitation characteristics of high temperature superconducting pinned maglev train[J]. China Mechanical Engineering, 2022, 33(22): 2764-2771.
    [8] DENG Z G, ZHENG J, SONG H H, et al. Free vibration of the high temperature superconducting maglev vehicle model[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2071-2074. doi: 10.1109/TASC.2007.899247
    [9] 赵宪锋,周又和. 高温超导悬浮系统的磁刚度研究[J]. 兰州大学学报(自然科学版),2015,51(4): 577-582.

    ZHAO Xianfeng, ZHOU Youhe. Magnetic stiffness of a high-temperature superconducting levitation system[J]. Journal of Lanzhou University (Natural Sciences), 2015, 51(4): 577-582.
    [10] 杨文姣,马光同,Loic Queval,等. 基于三维多物理场强耦合模型的超导磁悬浮振动特性[J]. 科学通报,2019,64(31): 3255-3266.

    YANG Wenjiao, MA Guangtong, QUEVAL L, et al. Vibration characteristics research on HTS magnetic levitation system based on a strong-coupled multi-physics model[J]. Chinese Science Bulletin, 2019, 64(31): 3255-3266.
    [11] 邓斌,陈武,邓自刚,等. 新型高温超导磁浮车辆通过曲线时的运动学规律[J]. 城市轨道交通研究,2019,22(5): 34-38.

    DENG Bin, CHEN Wu, DENG Zigang, et al. Kinematics law of high temperature superconducting maglev train in curve passing[J]. Urban Mass Transit, 2019, 22(5): 34-38.
    [12] ZHANG M L, SUN G X, LIU P F, et al. Research on force characteristics and running performance of novel type high-temperature superconductor magnetic levitation vehicle[J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(3): 635-646. doi: 10.1007/s10948-021-06075-7
    [13] WEINBERGER B R, LYNDS L, HULL J R. Magnetic bearings using high-temperature superconductors: some practical considerations[J]. Superconductor Science and Technology, 1990, 3(7): 381-388. doi: 10.1088/0953-2048/3/7/010
    [14] ZHUO P J, ZHANG Z X, GOU X F. Chaotic motion of a magnet levitated over a superconductor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(2): 1-6.
    [15] LI J P, LI H T, ZHENG J, et al. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field[J]. Journal of Applied Physics, 2017, 121: 243901.1-243901.6.
    [16] LI J P, ZHENG J, HUANG H A, et al. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7- x high-Tc superconducting bulks and NdFeB magnets[J]. Journal of Applied Physics, 2017, 122: 153902.1-153902.8.
    [17] LI H T, DENG Z G, JIN L A, et al. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model[J]. Superconductor Science and Technology, 2018, 31: 075010.1-075010.8.
    [18] LI J P, DENG Z G, XIA C C, et al. Subharmonic resonance in magnetic levitation of the high-temperature superconducting bulks YBa2Cu3O7-x under harmonic excitation[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(4): 1-8.
    [19] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [20] ZHANG M L, HAN Y J, GUO X, et al. The connection characteristics of flux pinned docking interface[J]. Journal of Applied Physics, 2017, 121: 113907.1-113907.10.
    [21] LI J P, DENG Z G, XIA C C, et al. Subharmonic resonance in magnetic levitation of the high-temperature superconducting bulks YBa2Cu3O7-x under harmonic excitation[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(4): 3600908.1-3600908.8.
  • 加载中
图(19)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  145
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 修回日期:  2023-05-10
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2023-05-12

目录

    /

    返回文章
    返回