• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高寒动车组温变特性对运行性能的影响分析

祁亚运 李龙 石怀龙 宋烨 戴焕云

祁亚运, 李龙, 石怀龙, 宋烨, 戴焕云. 高寒动车组温变特性对运行性能的影响分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220876
引用本文: 祁亚运, 李龙, 石怀龙, 宋烨, 戴焕云. 高寒动车组温变特性对运行性能的影响分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220876
QI Yayun, LI Long, SHI Huailong, SONG Ye, DAI Huanyun. Influence of Temperature-Varying Characteristics on Operating Performance of Alpine Electric Multiple Units[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220876
Citation: QI Yayun, LI Long, SHI Huailong, SONG Ye, DAI Huanyun. Influence of Temperature-Varying Characteristics on Operating Performance of Alpine Electric Multiple Units[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220876

高寒动车组温变特性对运行性能的影响分析

doi: 10.3969/j.issn.0258-2724.20220876
基金项目: 国家自然基金(U2268211,52272406,52002341);四川省自然科学基金(2022NSFSC1887);牵引动力国家重点实验室开放课题(TPL2309)
详细信息
    作者简介:

    祁亚运(1990—),男,讲师,研究方向为车辆动力学与轮轨磨耗,E-mail:yayun_qi@163.com

    通讯作者:

    李龙(1985—),男,高级工程师,研究方向为轨道车辆结构与设计,E-mail:Lil1919@126.com

  • 中图分类号: U270.1

Influence of Temperature-Varying Characteristics on Operating Performance of Alpine Electric Multiple Units

  • 摘要:

    高寒动车组服役环境长期受温度的影响,车辆悬挂元件参数和轨下参数具有很强的季节变化特性,为了探究高寒动车组中橡胶元件温变特性对运行性能的影响,本文建立高寒动车组多体动力学模型,分析不同温度下的车辆动力学特性;利用Jendel磨耗模型探究不同温度下的车轮磨耗特性;基于疲劳预测模型提出车轮表面疲劳因子. 结果表明:温度变化会改变悬挂参数的刚度和阻尼值,随着温度降低,悬挂参数刚度增大;低温状态下,动车组动力学性能整体下降,随着温度降低车辆磨耗都会增大,当运行20万里程后,−40 ℃下车轮的磨耗深度最大,较20 ℃ 时增大6.2%;随着温度降低,表面接触疲劳指数也逐渐增大,温度分别为20、−20、−40 ℃时,车轮表面疲劳因子分别为6.4648×10−4,6.615×10−4,6.7885×10−4;温变特性对高寒动车组悬挂参数有较大影响,低温下整体动力学性能下降,磨耗增大,车轮表面疲劳增大.

     

  • 图 1  转臂节点三维图

    Figure 1.  Three-dimensional drawing of rotary arm node

    图 2  橡胶节点动态特性

    Figure 2.  Dynamic characteristics of rubber node

    图 3  高寒动车组车辆动力学模型

    Figure 3.  Vehicle dynamics model of alpine EMUs

    图 4  悬挂参数温变特性

    Figure 4.  Temperature-varying characteristics of suspension parameters

    图 5  轨道模型和扣件胶垫温变特性

    Figure 5.  Temperature-varying characteristics of track model and fastener pad

    图 6  临界速度

    Figure 6.  Critical speed

    图 7  平稳性和舒适度指标

    Figure 7.  Smoothness and comfort indexes

    图 8  车轮磨耗计算流程

    Figure 8.  Wheel wear calculation flow

    图 10  短距离车轮磨耗

    Figure 10.  Short-distance wheel wear

    图 9  轮轨接触参数分析

    Figure 9.  Analysis of wheel-rail contact parameters

    图 11  不同温度下的磨耗预测演变

    Figure 11.  Evolution of wear prediction at different temperatures

    图 12  轮轨滚动接触疲劳损伤曲线

    Figure 12.  Fatigue damage curve of wheel-rail rolling contact

    图 13  磨耗指数和接触疲劳损伤分布

    Figure 13.  Wear index and contact fatigue damage distribution

    图 14  不同温度下的疲劳指数分布和接触疲劳因子

    Figure 14.  Distribution of fatigue index and contact fatigue factor at different temperatures

    表  1  高速客运专线典型计算工况

    Table  1.   Typical calculation working conditions for high-speed passenger special lines

    曲线半
    径/m
    超高/
    mm
    缓和曲线
    长/m
    圆曲线
    长/m
    运行速度/
    (km•h−1)
    所占比例/
    %
    直线 300 60
    12000 80 220 480 300 1
    9000 100 300 320 300 7
    8000 120 340 250 300 8
    7000 145 360 210 300 10
    5500 165 360 210 300 7
    5000 120 360 210 300 7
    下载: 导出CSV
  • [1] 金学松,赵国堂,梁树林,等. 高速铁路轮轨磨损特征、机理、影响和对策:车轮踏面横向磨耗[J]. 机械工程学报,2018,54(4): 3-13. doi: 10.3901/JME.2018.04.003

    JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear: transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4): 3-13. doi: 10.3901/JME.2018.04.003
    [2] 谢清林,陶功权,王鹏,等. 高寒动车组车轮磨耗演变特性及其影响分析[J]. 工程力学,2019,36(10): 229-237.

    XIE Qinglin, TAO Gongquan, WANG Peng, et al. Wheel wear evolution characteristics of alpine high-speed emu and analysis of its influence[J]. Engineering Mechanics, 2019, 36(10): 229-237.
    [3] 徐腾养,池茂儒,田向阳,等. 抗蛇行减振器内部油液温度对其动态特性的影响[J]. 机车电传动,2016(6): 43-46.

    XU Tengyang, CHI Maoru, TIAN Xiangyang, et al. Infl uence of oil temperature of yaw damper on dynamic performance[J]. Electric Drive for Locomotives, 2016(6): 43-46.
    [4] 谭富星,石怀龙,王玮,等. 转向架橡胶件动态参数的高低温特性[J]. 交通运输工程学报,2019,19(4): 104-114.

    TAN Fuxing, SHI Huailong, WANG Wei, et al. High and low temperature characteristics of rubber component dynamic parameters of a bogie[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 104-114.
    [5] 侯茂锐,胡晓依,郭涛,等. 高速动车组轴箱转臂节点性能对轮轨耦合振动的影响[J]. 交通运输工程学报,2021,21(6): 170-180.

    HOU Maorui, HU Xiaoyi, GUO Tao, et al. Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 170-180.
    [6] 侯茂锐,胡晓依,宗仁莉,等. 高速动车组转臂定位橡胶节点刚度对车辆动力学性能影响[J]. 中国铁道科学,2021,42(4): 120-128.

    HOU Maorui, HU Xiaoyi, ZONG Renli, et al. Influence of stiffness of arm positioning rubber node on vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2021, 42(4): 120-128.
    [7] 滕万秀,罗仁,石怀龙,等. 高寒动车组−40 ℃环境下动力学性能[J]. 机械工程学报,2019,55(4): 148-153. doi: 10.3901/JME.2019.04.148

    TENG Wanxiu, LUO Ren, SHI Huailong, et al. Dynamics behaviour of high-speed train at the low temperature of −40 ℃[J]. Journal of Mechanical Engineering, 2019, 55(4): 148-153. doi: 10.3901/JME.2019.04.148
    [8] 罗仁,李然,胡俊波,等. 考虑随机参数的高速列车动力学分析[J]. 机械工程学报,2015,51(24): 90-96. doi: 10.3901/JME.2015.24.090

    LUO Ren, LI Ran, HU Junbo, et al. Dynamic analysis of high-speed train with stochastic parameters[J]. Journal of Mechanical Engineering, 2015, 51(24): 90-96. doi: 10.3901/JME.2015.24.090
    [9] QI Y Y, DAI H Y. Influence of motor harmonic torque on wheel wear in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(1): 32-42. doi: 10.1177/0954409719830808
    [10] 侯茂锐,陈秉智,成棣,等. 两种典型动车组车轮磨耗演变规律及其动力学影响研究[J]. 机械工程学报,2022,58(4): 191-201. doi: 10.3901/JME.2022.04.191

    HOU Maorui, CHEN Bingzhi, CHENG Di, et al. Two typical wheel wear evolution characteristics and its influence on dynamic performance of high-speed EMU[J]. Journal of Mechanical Engineering, 2022, 58(4): 191-201. doi: 10.3901/JME.2022.04.191
    [11] SANG H T, ZENG J, QI Y Y, et al. Study on wheel wear mechanism of high-speed train in accelerating conditions[J]. Wear, 2023, 516/517: 204597.1-204597.1-5.
    [12] LI Y Y, REN Z S, ENBLOM R, et al. Wheel wear prediction on a high-speed train in China[J]. Vehicle System Dynamics, 2020, 58(12): 1839-1858. doi: 10.1080/00423114.2019.1650941
    [13] 孙丽霞,李晓峰,胡晓依,等. 高速动车组车轮磨耗对轮轨接触关系及车辆动力学性能的影响[J]. 中国铁道科学,2020,41(6): 117-126.

    SUN Lixia, LI Xiaofeng, HU Xiaoyi, et al. Influence of wheel wear on wheel-rail contact relationship and vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2020, 41(6): 117-126.
    [14] 肖乾,周前哲,程玉琦,等. 高速列车车轮磨耗型面特征提取及参数化描述方法研究[J/OL]. 机械工程学报,1-9[2022-09-03]

    XIAO Qian, ZHOU Qianzhe, CHENG Yuqi, et al. Study on Extraction of Wheel Profile Wear Characteristics and Curve Parameterization Description of High-speed Train Wheels[J/OL]. Journal of mechanical engineering, 1-9[2022-09-03].
    [15] YE Y G, HECHT M. Wear concentration index: an alternative to the target T-gamma in railway wheel profile optimization[C]//The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks. Cham: Springer, 2022: 522-532.
    [16] 宋志坤,任海星,胡晓依,等. 动车组车轮多边形磨耗发展历程模拟及车轮粗糙度的影响[J]. 铁道学报,2021,43(6): 23-28.

    SONG Zhikun, REN Haixing, HU Xiaoyi, et al. Research on development process simulation and influencing factors of polygonal wear of high-speed train wheels[J]. Journal of the China Railway Society, 2021, 43(6): 23-28.
    [17] YE Y G, ZHU B, HUANG P, et al. OORNet: a deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains[J]. Measurement, 2022, 199: 111268.1-111268.60.
    [18] CUI X L, BAO P Y, LI T, et al. Research on the failure mechanism of elastic strip fracture in corrugated sections of metros[J]. Engineering Failure Analysis, 2023, 143: 106837.1-106837.12.
    [19] QI Y Y, DAI H Y, GAN F, et al. Optimization of rail profile design for high-speed lines based on Gaussian function correction method[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023: 095440972311525.1-095440972311525.11.
    [20] 杨麒陆,王平. WJ-7型高速铁路扣件胶垫刚度温变性的测试与分析[J]. 中国铁路,2017(8): 58-63.

    YANG Qilu, WANG Ping. Tests and analysis of rubber pad stiffness of WJ-7 HSR fastening against temperature changes[J]. China Railway, 2017(8): 58-63.
    [21] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会. 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599—2019[S]. 北京:中国标准出版社,2019.
    [22] 石怀龙,罗仁,曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报,2021,21(1): 36-58.

    SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58.
    [23] 黄彩虹,罗仁,曾京,等. 系统参数对高速列车车轮踏面凹陷磨耗的影响[J]. 交通运输工程学报,2016,16(3): 55-62.

    HUANG Caihong, LUO Ren, ZENG Jing, et al. Effect of system parameters on tread-hollow wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 55-62.
    [24] 祁亚运,戴焕云,干锋,等. 高速动车组车轮偏磨影响因素与限值研究[J]. 表面技术,2023,52(5): 51-60.

    QI Yayun, DAI Huanyun, GAN Feng, et al. Influencing factors and limits of asymmetrical wheel wear of high-speed EMUs[J]. Surface Technology, 2023, 52(5): 51-60.
    [25] JENDEL T. Prediction of wheel profile wear—comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99.
    [26] TUNNA J, SINCLAIR J, PEREZ J. The development of a wheel wear and rolling contact fatigue model[J]. Engineering, Materials Science, 2007, 9: 106951664.1-106951664.12.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  63
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-03-20
  • 网络出版日期:  2024-06-17

目录

    /

    返回文章
    返回