• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于聚类和随机森林耦合模型的崩滑灾害易发性评估

杜映锦 席传杰 胡卸文 吴建利 刘波 何坤

杜映锦, 席传杰, 胡卸文, 吴建利, 刘波, 何坤. 基于聚类和随机森林耦合模型的崩滑灾害易发性评估[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220864
引用本文: 杜映锦, 席传杰, 胡卸文, 吴建利, 刘波, 何坤. 基于聚类和随机森林耦合模型的崩滑灾害易发性评估[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220864
DU Yingjin, XI Chuanjie, HU Xiewen, WU Jianli, LIU Bo, HE Kun. Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220864
Citation: DU Yingjin, XI Chuanjie, HU Xiewen, WU Jianli, LIU Bo, HE Kun. Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220864

基于聚类和随机森林耦合模型的崩滑灾害易发性评估

doi: 10.3969/j.issn.0258-2724.20220864
基金项目: 国家重点研发计划(2018YFC1505401)
详细信息
    作者简介:

    杜映锦(1979—),男,博士研究生,研究方向为地质灾害及防治工程,E-mail:dyj@swjtu.cn

    通讯作者:

    胡卸文(1963—),男,教授,博士,研究方向为工程地质、环境地质,E-mail:huxiewen@163.com

  • 中图分类号: X43

Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model

  • 摘要:

    灾害易发性评估通常是基于灾害空间分布特征进行概率建模,然而灾害本身存在空间异质性. 本文以汶马高速汶川至理县段沿线崩滑灾害为例,为解决灾害的空间异质性问题,利用K-mean算法将研究区灾害威胁对象(人员、财产)及危险程度(损毁房屋面积、损毁道路长度)进行空间聚类并赋予研究区不同聚类属性;从水文、地质、地貌条件等方面综合选取坡度、高程、坡向、曲率、地表切割度、河型弯曲系数、距构造带距离、岸坡坡体结构和地层岩性9个因子,将样本划分为70%的训练数据、30%的测试数据,对比K-RF模型与传统RF模型在易发性评估中的性能,以期为高速公路的运营安全及灾害防治提供理论支撑. 结果表明:K-RF模型极高易发区共包含82.95%灾害点,相较于单一RF模型取得了更好的评价结果(AUC值提高5.4%);采用聚类的方法解决灾害空间异质性是可行的,但本文局限性在于未能从灾害本身反映灾害空间异质性,耦合模型结果本质上是易发性和易损性的综合反映.

     

  • 图 1  K-RF建模流程

    Figure 1.  Flow chart of K-RF model

    图 2  研究区位置及灾害编录

    Figure 2.  Location of study area and hazard inventories

    图 3  影响因子

    Figure 3.  Influencing factors

    图 4  VIF检验结果

    Figure 4.  Results of VIF test

    图 5  模型聚类结果

    Figure 5.  Model clustering results

    图 6  ROC曲线对比

    Figure 6.  Comparison of ROC curves

    图 7  易发性统计结果

    Figure 7.  Statistics results of susceptibility

    图 8  K-RF模型易发性制图结果

    Figure 8.  Mapping results of susceptibility of K-RF model

    图 9  RF模型易发性制图结果

    Figure 9.  Mapping results of susceptibility of RF model

    表  1  聚类结果

    Table  1.   Results of clustering

    类别 灾害数量/处 平均威胁人员数量 平均威胁财产/万元 平均损毁房屋面积/m2 平均损毁道路长度/m
    1 53 95 337.2 8.9 0
    2 65 50 164.6 1.8 0
    3 46 36 113.5 0.43 0
    4 53 59 80.4 1.38 10.2
    下载: 导出CSV

    表  2  验证指标计算结果

    Table  2.   Calculation results of validation indicators

    模型 Pre Acc R AUC
    RF 0.681 0.730 0.746 0.848
    K-RF 0.726 0.787 0.841 0.902
    下载: 导出CSV

    表  3  易发性分级统计结果

    Table  3.   Statistical results of susceptibility levels

    模型 易发性等级 分区面积/km2 灾害点个数/个 研究区分级面积占比/% 灾害占比/% 频率比
    K-RF 极高 35.7 180 10.24 82.95 8.10
    80.37 28 23.05 12.90 0.56
    中等 40.27 4 11.55 1.84 0.16
    82.5 3 23.66 1.38 0.06
    极低 109.9 2 31.52 0.92 0.03
    RF 极高 31.5 156 9.03 71.89 7.96
    71.74 45 20.57 20.74 1.01
    中等 49.27 9 14.13 4.15 0.29
    90.3 5 25.90 2.30 0.09
    极低 105.9 2 30.37 0.92 0.03
    下载: 导出CSV
  • [1] FELL R, COROMINAS J, BONNARD C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008, 102(3/4): 85-98.
    [2] NHU V H, HOANG N D, NGUYEN H, et al. Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area[J]. Catena, 2020, 188: 104458.1-104458.13.
    [3] 李利峰,杨华,张娟,等. 基于人工神经网络的区域滑坡预测研究[J]. 气象与环境科学,2020,43(3): 65-70.

    LI Lifeng, YANG Hua, ZHANG Juan, et al. Research on regional landslide prediction based on artificial neural network[J]. Meteorological and Environmental Sciences, 2020, 43(3): 65-70.
    [4] 常晁瑜,薄景山,李孝波,等. 地震黄土滑坡滑距预测的BP神经网络模型[J]. 地震工程学报,2020,42(6): 1609-1614. doi: 10.3969/j.issn.1000-0844.2020.06.1609

    CHANG Chaoyu, BO Jingshan, LI Xiaobo, et al. A BP neural network model for forecasting sliding distance of seismic loess landslides[J]. China Earthquake Engineering Journal, 2020, 42(6): 1609-1614. doi: 10.3969/j.issn.1000-0844.2020.06.1609
    [5] 许冲,徐锡伟. 逻辑回归模型在玉树地震滑坡危险性评价中的应用与检验[J]. 工程地质学报,2012,20(3): 326-333. doi: 10.3969/j.issn.1004-9665.2012.03.004

    XU Chong, XU Xiwei. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake[J]. Journal of Engineering Geology, 2012, 20(3): 326-333. doi: 10.3969/j.issn.1004-9665.2012.03.004
    [6] 吴博,赵法锁,贺子光,等. 基于BA-LSSVM模型的黄土滑坡致灾范围预测[J]. 中国地质灾害与防治学报,2020,31(5): 1-6.

    WU Bo, ZHAO Fasuo, HE Ziguang, et al. Prediction of the disaster area of loess landslide based on least square support vector machine optimized by bat algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 1-6.
    [7] XI C J, HAN M, HU X W, et al. Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 174-196. doi: 10.1007/s10064-022-02664-5
    [8] 文海家,胡东萍,王桂林. 汶川县地震滑坡易发性LR与NN评价比较研究[J]. 土木工程学报,2014,47(增1): 17-23.

    WEN Haijia, HU Dongping, WANG Guilin. Comparative study on LR and NN evaluation of earthquake landslide susceptibility in Wenchuan County[J]. China Civil Engineering Journal, 2014, 47(S1): 17-23.
    [9] YAO X, THAM L G, DAI F C. Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008, 101(4): 572-582. doi: 10.1016/j.geomorph.2008.02.011
    [10] 许冲,徐锡伟. 基于不同核函数的2010年玉树地震滑坡空间预测模型研究[J]. 地球物理学报,2012,55(9): 2994-3005. doi: 10.6038/j.issn.0001-5733.2012.09.018

    XU Chong, XU Xiwei. The 2010 Yushu earthquake triggered landslides spatial prediction models based on several kernel function types[J]. Chinese Journal of Geophysics, 2012, 55(9): 2994-3005. doi: 10.6038/j.issn.0001-5733.2012.09.018
    [11] TRUONG X, MITAMURA M, KONO Y, et al. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree[J]. Applied Sciences, 2018, 8(7): 1046.1-1046.22.
    [12] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
    [13] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. doi: 10.1006/jcss.1997.1504
    [14] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
    [15] WANG Y M, FENG L W, LI S J, et al. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China[J]. Catena, 2020, 188: 104425.1-104425.13.
    [16] DENG M, YANG W T, LIU Q L, et al. Heterogeneous space–time artificial neural networks for space–time series prediction[J]. Transactions in GIS, 2018, 22(1): 183-201. doi: 10.1111/tgis.12302
    [17] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1): 156-167.

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167.
    [18] 兰恒星,伍法权,王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报,2002,20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015

    LAN Hengxing, WU Faquan, WANG Sijing. GIS based landslide CF multi-variable regression model and its application[J]. Journal of Mountain Research, 2002, 20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015
    [19] 陈晓利,冉洪流,祁生文. 1976年龙陵地震诱发滑坡的影响因子敏感性分析[J]. 北京大学学报(自然科学版),2009,45(1): 104-110. doi: 10.3321/j.issn:0479-8023.2009.01.016

    CHEN Xiaoli, RAN Hongliu, QI Shengwen. Triggering factors susceptibility of earthquake-induced landslides in 1976 Longling earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 104-110. doi: 10.3321/j.issn:0479-8023.2009.01.016
    [20] 许冲,戴福初,姚鑫,等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报,2010,29(增1): 2972-2981.

    XU Chong, DAI Fuchu, YAO Xin, et al. Analysis of deterministic coefficient of influencing factors of Wenchuan earthquake landslide disaster based on GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2972-2981.
    [21] 陈绪坚,陈清扬. 黄河下游河型转换及弯曲变化机理[J]. 泥沙研究,2013(1): 1-6. doi: 10.3969/j.issn.0468-155X.2013.01.001

    CHEN Xujian, CHEN Qingyang. Theory of river pattern transformation and change of channel sinuosity ratio in Lower Yellow River[J]. Journal of Sediment Research, 2013(1): 1-6. doi: 10.3969/j.issn.0468-155X.2013.01.001
    [22] CHEN Z, LIANG S Y, KE Y T, et al. Landslide susceptibility assessment using different slope units based on the evidential belief function model[J]. Geocarto International, 2020, 35(15): 1641-1664. doi: 10.1080/10106049.2019.1582716
    [23] WEN H, WU X Y, LIAO X, et al. Application of machine learning methods for snow avalanche susceptibility mapping in the Parlung Tsangpo Catchment, southeastern Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2022, 198: 103535.1-103535.12.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  56
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-09-01
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回