• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

光伏发电系统的改进型快速GMPPT算法

周国华 薛宁 毕强

周国华, 薛宁, 毕强. 光伏发电系统的改进型快速GMPPT算法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220863
引用本文: 周国华, 薛宁, 毕强. 光伏发电系统的改进型快速GMPPT算法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220863
ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220863
Citation: ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220863

光伏发电系统的改进型快速GMPPT算法

doi: 10.3969/j.issn.0258-2724.20220863
基金项目: 国家自然科学基金项目(62271417,61771405)
详细信息
    作者简介:

    周国华(1983—),男,教授,博士生导师,研究方向为电力电子技术及其在新能源领域中的应用,E-mail:ghzhou-swjtu@163.com

  • 中图分类号: TM615

Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System

  • 摘要:

    为提高局部阴影条件下光伏发电的能量利用率,提出一种改进型快速全局最大功率点跟踪(global maximum power point tracking, GMPPT)算法. 首先,研究了局部阴影条件下光伏阵列的输出特性,并根据光伏阵列输出曲线中膝点与开路电压的关系,将其划分为恒流区和恒压区;其次,分析传统的最大功率梯形(maximum power trapezium,MPT)算法和以MPT算法为基础的改进型快速GMPPT算法的工作原理,改进型快速GMPPT算法利用电压的动态上、下限来限定搜索区间,并跳过调整时间较长的恒流区,以提高跟踪速度;最后,通过仿真与实验验证算法的有效性. 实验结果表明:改进型快速GMPPT算法的最短跟踪时间为4 s,扫描电压与能量损失分别为17.34 V和98.19 J;与传统全局扫描算法相比,跟踪时间缩短68.25%,扫描电压降低74.86%,能量损失减少58.19%;与MPT算法相比,跟踪时间缩短68.00%,扫描电压降低75.63%,能量损失减少62.31%.

     

  • 图 1  光伏组串的电路结构

    Figure 1.  Circuit structure of the PV string

    图 2  光伏组件的输出特性曲线

    Figure 2.  Output characteristics of the PV module

    图 3  局部阴影条件下光伏组串的输出特性

    Figure 3.  Output characteristics of PV string under PSC

    图 4  MPT算法的跟踪示例

    Figure 4.  Tracking example of the MPT algorithm

    图 5  改进型快速GMPPT算法的流程图

    Figure 5.  Flowcharts of the improved and fast GMPPT algorithm

    图 6  改进型快速GMPPT算法的跟踪示例

    Figure 6.  Tracking example of the improved and fast GMPPT algorithm

    图 7  光伏MPPT系统原理图

    Figure 7.  Schematic of the PV system with MPPT

    图 8  不同局部阴影条件下光伏阵列的输出特性

    Figure 8.  Output characteristics of PV array under different PSCs

    图 9  阴影改变时采用不同算法的光伏阵列仿真波形

    Figure 9.  Simulation waveforms of the PV array with various algorithms when the shadow changes

    图 10  光伏GMPPT系统的实验平台

    Figure 10.  Experimental platform of PV system with GMPPT

    图 11  阴影改变时采用不同算法的光伏阵列实验波形

    Figure 11.  Experiment waveforms of the PV array with various algorithms when the shadow changes

    表  1  光伏阵列的输出参数

    Table  1.   Output parameters of the PV array

    条件 光照强度/(W·m−2 全局最大功率点
    PV1 PV2 PV3 功率/W 电压/V 电流/A
    PSC1 120 210 400 90.13 54.60 1.65
    PSC2 200 300 560 134.60 84.80 1.59
    PSC3 150 270 750 143.60 25.20 5.70
    下载: 导出CSV

    表  2  阴影条件变化下三种算法的仿真跟踪性能比较

    Table  2.   Simulation tracking performance comparison of the three algorithms under shading variation

    光照条件 扫描时间/s 总路径的扫描电压/V 能量损失/J
    算法1 算法2 算法3 算法1 算法2 算法3 算法1 算法2 算法3
    PSC1→PSC2 0.110 0.330 0.340 17.34 69.09 71.14 2.94 7.81 8.25
    PSC2→PSC3 0.095 0.295 0.300 17.57 69.09 69.96 4.76 13.66 13.69
    PSC3→PSC1 0.125 0.320 0.355 17.34 69.09 76.99 2.63 6.13 7.41
    下载: 导出CSV

    表  3  阴影变化下三种算法的实验跟踪性能比较

    Table  3.   Experiment tracking performance comparison of the three algorithms under shading variation

    光照条件 扫描时间/s 总路径的扫描电压/V 能量损失/J
    算法1 算法2 算法3 算法1 算法2 算法3 算法1 算法2 算法3
    PSC1→PSC2 4.0 12.6 12.5 17.34 69.09 71.14 98.19 234.86 260.49
    PSC2→PSC3 4.2 12.3 12.4 17.57 69.09 69.96 158.23 467.10 467.35
    PSC3→PSC1 4.5 12.6 13.8 17.34 69.09 76.99 72.00 266.25 311.85
    下载: 导出CSV
  • [1] GHANBARI T. Hot spot detection and prevention using a simple method in photovoltaic panels[J]. IET Generation, Transmission & Distribution, 2017, 11(4): 883-890.
    [2] 杨永恒,周克亮. 光伏电池建模及MPPT控制策略[J]. 电工技术学报,2011,26(增1): 229-234.

    YANG Yongheng, ZHOU Keliang. Photovoltaic cell modeling and MPPT control strategies[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 229-234.
    [3] AHMED J, SALAM Z. An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1487-1496. doi: 10.1109/TSTE.2018.2791968
    [4] 韩国鹏,薛聪聪,王伟,等. 应对移动阴影的车载光伏步进扫描快速功率追踪[J]. 西南交通大学学报,2021,56(2): 354-362.

    HAN Guopeng, XUE Congcong, WANG Wei, et al. Fast power tracking step-scanning method of vehicle-mounted photovoltaic system with moving shadows[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 354-362.
    [5] 陈维荣,傅王璇,韩莹,等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报,2021,56(3): 640-649.

    CHEN Weirong, FU Wangxuan, HAN Ying, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 640-649.
    [6] VELASCO-QUESADA G, GUINJOAN-GISPERT F, PIQUE-LOPEZ R, et al. Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4319-4331. doi: 10.1109/TIE.2009.2024664
    [7] NGUYEN D, LEHMAN B. An adaptive solar photovoltaic array using model-based reconfiguration algorithm[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2644-2654. doi: 10.1109/TIE.2008.924169
    [8] BISWAS J, KAMATH A M, GOPI A K, et al. Design, architecture, and real-time distributed coordination DMPPT algorithm for PV systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1418-1433. doi: 10.1109/JESTPE.2017.2756698
    [9] ISHAQUE K, SALAM Z. A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3195-3206.
    [10] 陈维荣,王伟颖,郑义斌,等. 局部阴影光伏发电系统中基于改进PSO的MPPT控制[J]. 西南交通大学学报,2018,53(6): 1095-1101,1129. doi: 10.3969/j.issn.0258-2724.2018.06.001

    CHEN Weirong, WANG Weiying, ZHENG Yibin, et al. MPPT control of partial shadow photovoltaic generation system based on improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101,1129. doi: 10.3969/j.issn.0258-2724.2018.06.001
    [11] NGUYEN T L, LOW K S. A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3456-3467. doi: 10.1109/TIE.2009.2039450
    [12] MALATHY S, RAMAPRABHA R. Maximum power point tracking algorithm of SPVA under inhomogeneous irradiation conditions: a modified Fibonacci search based approach[C]//2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS). Honolulu: IEEE, 2017: 487-492.
    [13] MURTAZA A, CHIABERGE M, SPERTINO F, et al. A maximum power point tracking technique based on bypass diode mechanism for PV arrays under partial shading[J]. Energy and Buildings, 2014, 73: 13-25. doi: 10.1016/j.enbuild.2014.01.018
    [14] 王云平,李颖,阮新波. 基于局部阴影下光伏阵列电流特性的最大功率点跟踪算法[J]. 电工技术学报,2016,31(14): 201-210,218. doi: 10.3969/j.issn.1000-6753.2016.14.023

    WANG Yunping, LI Ying, RUAN Xinbo. Maximum power point tracking algorithm for photovoltaic array under partial shading based on current property[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 201-210,218. doi: 10.3969/j.issn.1000-6753.2016.14.023
    [15] FURTADO A M S, BRADASCHIA F, CAVALCANTI M C, et al. A reduced voltage range global maximum power point tracking algorithm for photovoltaic systems under partial shading conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3252-3262. doi: 10.1109/TIE.2017.2750623
    [16] AQUIB M, JAIN S, AGARWAL V. A time-based global maximum power point tracking technique for PV system[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 393-402. doi: 10.1109/TPEL.2019.2915774
    [17] AQUIB M, JAIN S. A global maximum power point tracking technique based on current source region detection of I-V curve[C]//2018 IEEMA Engineer Infinite Conference (eTechNxT). New Delhi: IEEE, 2018: 1-5.
    [18] 王云平. 局部阴影条件下光伏阵列结构、MPPT方法及阻抗匹配变换器研究[D]. 南京:南京航空航天大学,2018.
    [19] WANG Y P, LI Y, RUAN X B. High-accuracy and fast-speed MPPT methods for PV string under partially shaded conditions[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 235-245. doi: 10.1109/TIE.2015.2465897
    [20] 丁金磊,程晓舫,翟载腾,等. 太阳电池填充因子随日照强度变化的理论分析与计算[J]. 中国工程科学,2007,9(6): 82-87. doi: 10.3969/j.issn.1009-1742.2007.06.015

    DING Jinlei, CHENG Xiaofang, ZHAI Zaiteng, et al. Theoretical analysis and calculation for filling factor of solar cell varying along with illumination intensity[J]. Strategic Study of CAE, 2007, 9(6): 82-87. doi: 10.3969/j.issn.1009-1742.2007.06.015
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-03-10
  • 网络出版日期:  2024-10-14

目录

    /

    返回文章
    返回