• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超高速永磁电动悬浮系统性能优化

胡永攀 曾杰伟 王志强 龙志强

胡永攀, 曾杰伟, 王志强, 龙志强. 超高速永磁电动悬浮系统性能优化[J]. 西南交通大学学报, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856
引用本文: 胡永攀, 曾杰伟, 王志强, 龙志强. 超高速永磁电动悬浮系统性能优化[J]. 西南交通大学学报, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856
HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856
Citation: HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856

超高速永磁电动悬浮系统性能优化

doi: 10.3969/j.issn.0258-2724.20220856
基金项目: 国家自然科学基金(52232013)
详细信息
    作者简介:

    胡永攀(1988—),男,博士研究生,研究方向为电磁悬浮与推进技术,E-mail:18745953753@139.com

    通讯作者:

    龙志强(1967—),男,教授,博士,研究方向为电磁悬浮与推进控制、智能诊断与容错控制、智能系统安全控制,E-mail:zhqlong@nudt.edu.cn

  • 中图分类号: TP273

Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System

  • 摘要:

    为提高超高速永磁电动悬浮系统的综合性能,围绕浮重比、浮阻比和悬浮刚度3个重要指标开展了多目标性能优化研究. 首先,对永磁电动悬浮系统进行横向延拓,推导三维电磁力模型,并进行有限元仿真分析;然后,针对浮重比、浮阻比和悬浮刚度的多目标优化问题,提出基于“系统级+子系统级”架构的并行优化策略,实现了线性加权意义下的系统性能最优. 最后,搭建了“Halbach永磁阵列+凸缘式铝制转盘”实验平台,验证上述优化策略在提高系统性能上的有效性. 研究结果表明:在超高速工况下,理论解析计算得到悬浮力与仿真结果误差在8%以内,而磁阻力几乎没有误差;通过优化设计,浮重比从11.0提升至18.3,增幅为75.50%;浮阻比从3.5提升至3.8,增幅为7.50%;单位质量永磁阵列的悬浮刚度从6.1 kN/m提升至20.6 kN/m,增幅为235.94%.

     

  • 图 1  超高速火箭橇永磁电动悬浮方案

    Figure 1.  Permanene electrodynamic suspension scheme for ultra-high spend rocket sled

    图 2  永磁电动悬浮系统延拓示意

    Figure 2.  Continuation of permanent magnet electrodynamic suspension system

    图 3  永磁电动悬浮电磁力仿真与理论对比

    Figure 3.  Electromagnetic force comparison of permanent magnet electrodynamic suspension system between simulation and theoretical results

    图 4  多目标优化优化策略流程

    Figure 4.  Flow chart of multi-objective optimization strategy

    图 5  各个变量的迭代过程

    Figure 5.  Iterative process of each variable

    图 6  永磁电动悬浮系统悬浮、导向一体化实验台

    Figure 6.  Suspension and guidance integrated experimental platform for permanent magnet electrodynamic suspension system

    图 7  电磁力理论值与实验值的对比

    Figure 7.  Electromagnetic force comparison between experimental and theoretical results

    表  1  M=4,8时,εnγn的取值

    Table  1.   Values of εn and γn when M = 4,8

    Mn/εnγn
    41sin π/4sin π/4
    31/3sin π/4−1/3sin π/4
    5−1/5sin π/4−1/5sin π/4
    7−1/7sin π/41/7sin π/4
    91/9sin π/41/9sin π/4
    812sin π/82sin π/8
    72/7sin π/8−2/7sin π/8
    9−2/9sin π/8−2/9sin π/8
    15−2/15sin π/82/15sin π/8
    172/17sin π/82/17sin π/8
    下载: 导出CSV

    表  2  电动悬浮系统特征参数

    Table  2.   Parameters of electrodynamic suspension system

    参数 Br/T M λ/mm l/mm w/mm d/mm W/mm h/mm y1/mm
    取值 1.44 8 0.24 0.27 60 30 100 30 15
    下载: 导出CSV

    表  3  基于PSO和PCS的多目标优化结果对比

    Table  3.   Comparison of multi-objective optimization results

    参数PSOPCS
    λ/mm162.5232.1
    w/mm86.8191.6
    d/mm22.822.4
    W/mm130.1383.1
    h/mm3.21.0
    ζ172.674.9
    ζ215.016.3
    ζ3/(MN·m−10.50.7
    下载: 导出CSV

    表  4  优化前、后永磁电动悬浮系统的性能对比

    Table  4.   Performance comparison of permanent magnet electrodynamic suspension system before and after optimization

    参数及指标优化前优化后
    永磁阵列
    尺寸/mm
    200(波长),
    40(宽),40(厚)
    153.6(波长),
    66.8(宽),23.4(厚)
    v/(m·s−16060
    y1/mm2020
    浮重比11.018.3
    浮阻比3.53.8
    悬浮刚度/
    ((kN·m−1)·mg−1
    6.120.6
    下载: 导出CSV
  • [1] 夏有财,孙其会,肖军,等. 火箭橇运动计算算法优化与试验验证[J]. 航空动力学报,2021,36(7): 1564-1568.

    XIA Youcai, SUN Qihui, XIAO Jun, et al. Optimization and test verification of rocket sled motion calculation algorithm[J]. Journal of Aerospace Power, 2021, 36(7): 1564-1568.
    [2] GIERAS J F. Ultra high-speed ground transportation systems: Current Status and a vision for the future[J]. Przeglad Elektrotechniczny, 2020, 9: 3-9.
    [3] 李冠醇,李杰,陈强. 应用于高速滑撬的电动悬浮和电磁推进系统设计[J]. 推进技术,2017,38(7): 1468-1474.

    LI Guanchun, LI Jie, CHEN Qiang. Design of an electrodynamic suspension and electromagnetic propulsion system for high speed test track[J]. Journal of Propulsion Technology, 2017, 38(7): 1468-1474.
    [4] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [5] 张瑞华,刘育红,徐善纲. 美国Magplane磁悬浮列车方案介绍[J]. 变流技术与电力牵引,2005(5): 40-43.

    ZHANG Ruihua, LIU Yuhong, XU Shangang. American magplane schemes[J]. Converter Technology & Electric Traction, 2005(5): 40-43.
    [6] 李云钢,常文森,闫宇壮. 美国新型结构磁悬浮交通技术分析与比较[J]. 机车电传动,2006(3): 6-9,39. doi: 10.3969/j.issn.1000-128X.2006.03.002

    LI Yungang, CHANG Wensen, YAN Yuzhuang. Analysis and comparison of new maglev transport technology in USA[J]. Electric Drive for Locomotives, 2006(3): 6-9,39. doi: 10.3969/j.issn.1000-128X.2006.03.002
    [7] ROSS P E. Hyperloop: No pressure[J]. IEEE Spectrum, 2016, 53(1): 51-54. doi: 10.1109/MSPEC.2016.7367468
    [8] HAN Q H. Analysis and modeling of the EDS maglev system based on the Halbach permanent magnet array [D]. Orlando: University of Central Florida, 2004.
    [9] DAVEY K. Optimization shows Halbach arrays to be non-ideal for induction devices[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1035-1038. doi: 10.1109/20.877618
    [10] 李春生,杜玉梅,严陆光. 应用于磁浮列车的直线型Halbach磁体结构的优化设计[J]. 高技术通讯,2007,17(7): 724-729. doi: 10.3321/j.issn:1002-0470.2007.07.013

    LI Chunsheng, DU Yumei, YAN Luguang. Optimal design of linear PM Halbach array for EDS maglev[J]. Chinese High Technology Letters, 2007, 17(7): 724-729. doi: 10.3321/j.issn:1002-0470.2007.07.013
    [11] 王江波,李耀华,严陆光. 直线Halbach磁体用于磁浮列车涡流制动的研究[J]. 电气传动,2010,40(5): 8-11.

    WANG Jiangbo, LI Yaohua, YAN Luguang. Study on applying the linear halbach array to eddy current brake system for maglev[J]. Electric Drive, 2010, 40(5): 8-11.
    [12] ZHANG Z H, SHI L M, WANG K, et al. Characteristics investigation of single-sided ironless PMLSM based on Halbach Array for medium-speed maglev train[J]. China Electrotechnical Society Transactions on Electrical Machines and Systems, 2017(4): 375-382.
    [13] ZHAO M T, GE Q X, GAO Z, et al. Analysis of electromagnetic and damping characteristics of permanent magnet electrodynamic suspension system[C]//2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). Wuhan: IEEE, 2021: 1-6.
    [14] DUAN J H, XIAO S, ZHANG K L, et al. Analysis and optimization of asymmetrical double-sided electrodynamic suspension devices[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-5.
    [15] LUO C, ZHANG K L, ZHANG W L, et al. 3D analytical model of permanent magnet and electromagnetic hybrid halbach array electrodynamic suspension system[J]. Journal of Electrical Engineering & Technology, 2020, 15(4): 1713-1721.
    [16] 罗成. 永磁电磁混合Halbach阵列电动悬浮特性及稳定控制研究[D]. 成都: 西南交通大学, 2021.
    [17] 罗成,张昆仑,王滢. 永磁电磁混合Halbach阵列电动悬浮的稳定性控制[J]. 西南交通大学学报,2022,57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868

    LUO Cheng, ZHANG Kunlun, WANG Ying. Stability control of electrodynamic suspension with permanent magnet and electromagnet hybrid halbach array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868
    [18] 巫川,李冠醇,王东. 永磁电动悬浮系统三维解析建模与电磁力优化分析[J]. 电工技术学报,2021,36(5): 924-934. doi: 10.19595/j.cnki.1000-6753.tces.201099

    WU Chuan, LI Guanchun, WANG Dong. 3-D analytical modeling and electromagnetic force optimization of permanent magnet electrodynamic suspension system[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 924-934. doi: 10.19595/j.cnki.1000-6753.tces.201099
    [19] LONG Z Q, HE G, XUE S. Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array[J]. IEEE Transactions on Magnetics, 2011, 47(12): 4717-4724. doi: 10.1109/TMAG.2011.2159237
    [20] HU Y P, LONG Z Q, XU Y S, et al. Control-oriented modeling for the electrodynamic levitation with permanent magnet Halbach array[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 67(3): 375-392. doi: 10.3233/JAE-210007
    [21] 贺光. 基于Halbach结构的永磁电动与电磁混合悬浮技术研究[D]. 长沙: 国防科学技术大学, 2010.
    [22] 王厚生. 永磁电动式导体板磁悬浮列车轨道结构及相关研究[D]. 北京: 中国科学院, 2004.
    [23] 李春生. 永磁电动式磁悬浮的研究[D]. 北京: 中国科学院, 2007.
    [24] HU Y P, LONG Z Q, ZENG J W, et al. Analytical optimization of electrodynamic suspension for ultrahigh-speed ground transportation[J]. IEEE Transactions on Magnetics, 2021, 57(8): 1-11.
    [25] WANG F Y, ZHANG J L, ZHAO J D, et al. Two dimensional analytical modeling and electromagnetic force optimization of permanent magnet electrodynamic suspension system[C]//2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). Wuhan: IEEE, 2021: 1-5.
    [26] 段家珩. 永磁板式电动悬浮边端效应及三维电磁力特性的研究[D]. 成都: 西南交通大学, 2021.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  229
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-07-06

目录

    /

    返回文章
    返回