• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基坑开挖对邻近既有道路影响的两阶段分析法

张坤勇 李俊吉 张弛 李福东 朱诚

张坤勇, 李俊吉, 张弛, 李福东, 朱诚. 基坑开挖对邻近既有道路影响的两阶段分析法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220850
引用本文: 张坤勇, 李俊吉, 张弛, 李福东, 朱诚. 基坑开挖对邻近既有道路影响的两阶段分析法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220850
ZHANG Kunyong, LI Junji, ZHANG Chi, LI Fudong, ZHU Cheng. Two-stage Analysis Method for Influence of Foundation Pit Excavation on Adjacent Existing Roads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220850
Citation: ZHANG Kunyong, LI Junji, ZHANG Chi, LI Fudong, ZHU Cheng. Two-stage Analysis Method for Influence of Foundation Pit Excavation on Adjacent Existing Roads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220850

基坑开挖对邻近既有道路影响的两阶段分析法

doi: 10.3969/j.issn.0258-2724.20220850
详细信息
  • 中图分类号: TU753

Two-stage Analysis Method for Influence of Foundation Pit Excavation on Adjacent Existing Roads

  • 摘要:

    针对城市基坑开挖过程中邻近道路沉降开裂问题,基于Winkler理论,将研究对象从一维结构扩展到二维结构. 首先,建立道路在基坑开挖引起沉降场下的计算模型,推导出道路挠曲变形控制方程;其次,采用两阶段分析方法,考虑基坑开挖深度、宽长比、支护刚度以及坑底以上软土层厚度等因素,给出基坑开挖引起沉降场修正公式和地表最大沉降预测方法;接着,将沉降场代入道路挠曲变形控制方程,通过有限差分法求解四阶非线性偏微分方程;最后,通过工程实例对上述关于基坑开挖条件下道路计算分析模型进行验证. 现场监测数据与理论解、数值模拟结果比较发现:道路沉降的误差分别为15%和8.3%,均在合理范围内,确定本文所提出的基坑开挖条件下道路计算分析模型的可靠性.

     

  • 图 1  基坑开挖下道路-土相互作用模型

    Figure 1.  Road-soil interaction model under foundation pit excavation

    图 2  弹性薄板示意

    Figure 2.  Elastic sheet

    图 3  板的应力

    Figure 3.  Stress of plate

    图 4  板的内力

    Figure 4.  Internal force of plate

    图 5  道路简化模型边界条件

    Figure 5.  Boundary conditions of simplified road model

    图 6  基本模型基坑支护结构剖面图(单位:m)

    Figure 6.  Sectional drawing of foundation pit support structure of basic model (unit: m)

    图 7  地表沉降沿基坑长度方向的沉降分布曲线

    注:图中实心点表示数值模拟结果,虚线表示拟合结果,R为影响半径,R2为拟合相关系数.

    Figure 7.  Distribution curves of surface settlement along length of foundation pit

    图 8  拟合系数与基坑开挖深度关系

    Figure 8.  Relationship between fitting coefficient and excavation depth of foundation pit

    图 9  坑外地表最大沉降预测曲线

    Figure 9.  Prediction curves of maximum settlement outside pit

    图 10  限差分法道路节点划分示意

    Figure 10.  Schematic diagram of road node division by limited difference method

    图 11  工程现场平面示意

    Figure 11.  Project site

    图 12  基坑支护结构剖面图(单位:m)

    Figure 12.  Sectional drawing of foundation pit support structure (unit: m)

    图 13  工程实例模型示意

    Figure 13.  Engineering example model

    图 14  地表及路面沉降云图

    Figure 14.  Surface and pavement settlement cloud map

    图 15  道路纵向沉降计算值与实际监测结果

    Figure 15.  Calculated value and actual monitoring result

    表  1  修正莫尔-库伦模型参数

    Table  1.   Modified Mohr-Coulomb model parameters

    土层名称 γ /(kN•m−3 φ /(°) c/kPa $\mu $ e0 Es/MPa Eoed/MPa E50/MPa Eur/MPa
    素填土 18.4 13.6 11.1 0.33 0.914 4.41 4.41 4.41 22.05
    淤泥质粉质黏土 17.7 11.8 8.4 0.40 1.100 3.37 3.37 6.74 33.70
    粉质黏土夹粉土 17.8 16.4 10.4 0.35 0.953 4.20 4.20 8.20 41.00
    粉土夹粉砂 18.5 23.3 8.5 0.31 0.812 6.56 6.56 6.56 32.80
    粉细砂 18.5 32.3 2.0 0.27 0.745 10.05 10.05 10.05 50.25
    卵石 20.0 35.0 30 0.25 0.650 15.0 15.0 15.0 75.00
    风化岩 21.0 35.0 30 0.25 0.600 30.0 30.0 20.0 100.00
     注:γ为土体重度;φ为土体内摩擦角;c为土体黏聚力;$\mu $为泊松比;e0为初始孔隙比;Es为土体压缩模量,$ E_{{\text{oed}}} $为固结试验的参考切线模量,$ E_{50}^{} $为三轴排水剪切试验的参考割线模量,$ E_{{\text{ur}}}^{} $为三轴排水剪切试验的参考加卸载模量,四者之间存在经验关系[23,24].
    下载: 导出CSV

    表  2  支护刚度K取值

    Table  2.   Values of support stiffness K

    t(m)EI(Pa)have(m)支撑层数(层)K
    0.6540 × 1036.0340
    0.81280 × 1036.03100
    0.81280 × 1034.54310
    0.81280 × 1034.05500
    1.02500 × 1034.05975
    下载: 导出CSV

    表  3  影响因素值

    Table  3.   V Values of influencing factors

    影响因素影响因素取值
    K(logK40
    (1.60)
    100
    (2.00)
    310
    (2.49)
    500
    (2.70)
    975
    (2.99)
    B/L0.30.50.70.9
    D/(m)0481216
    H/(m)1.56.010.515.020.0
    下载: 导出CSV

    表  4  地表最大沉降预测参数

    Table  4.   Prediction parameters of maximum surface settlement

    名称 H/m D/m B/L K
    取值 19.75 6.9 0.6 370
    下载: 导出CSV
  • [1] 余苑航,阎波. 我国超大城市地下空间开发现状及其发展趋势[J]. 地下空间与工程学报,2021,17(增1): 1-7.

    YU Yuan-hang, YAN Bo. Present situation and development trend of underground space in megacity in China[J]. Chinese Journal of Underground Space andEngineering, 2021, 17(S1): 1-7.
    [2] 陈志龙. 中国岩石力学与工程学会地下空间分会//2020中国城市地下空间发展蓝皮书[M]. 南京:科学出版社,2020.
    [3] 程康,徐日庆,应宏伟,等. 杭州软黏土地区某30.2 m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报,2021,40(4): 851-863.

    CHENG Kang, XU Riqing, YING Hongwei, et al. Performance analysis of a 30.2 m deep-large excavation in Hangzhou soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 851-863.
    [4] 董利虎,宋丹青,唐高杰,等. 超大深基坑开挖对周围环境变形影响及对策分析[J]. 水资源与水工程学报,2022,33(1): 199-205,224. doi: 10.11705/j.issn.1672-643X.2022.01.28

    DONG Lihu, SONG Danqing, TANG Gaojie, et al. Influence of super-large deep foundation pit excavation on the deformation of surrounding environment and countermeasures[J]. Journal of Water Resources and Water Engineering, 2022, 33(1): 199-205,224. doi: 10.11705/j.issn.1672-643X.2022.01.28
    [5] 陈云敏,胡琦,陈仁朋. 杭州地铁湘湖车站基坑坍塌引起的基底土深层扰动与沉降分析[J]. 土木工程学报,2014,47(7): 110-117.

    CHEN Yunmin, HU Qi, CHEN Renpeng. Soil disturbance by the collapse of retaining wall for a pit excavation and the induced additional settlement: a case study of Hangzhou Metro Xianghu Station[J]. China Civil Engineering Journal, 2014, 47(7): 110-117.
    [6] 周鹏,李凯. 城市建成区建筑基坑开挖对周边道路的影响及其时空特征研究[J]. 测绘通报,2021(增2): 136-139,144.

    ZHOU Peng, LI Kai. On the settlement monitoring of super high-rise building in the mountainous city and relevant data analysis[J]. Bulletin of Surveying and Mapping, 2021(S2): 136-139,144.
    [7] 闫周福. 软土地区深基坑开挖对围护结构及其周边环境影响的研究[D]. 重庆:重庆大学,2009.
    [8] 方浩. 软土地区基坑开挖对邻近高铁路基变形影响及保护距离研究[D]. 南京:东南大学,2017.
    [9] 雷华阳,冯双喜,万勇峰,等. 基坑开挖对既有临近滩涂铁路路基影响规律及安全措施研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(9): 969-978.

    LEI Huayang, FENG Shuangxi, WAN Yongfeng, et al. Influence law and safety measures of foundation pit excavation on existing railway subgrade in tidal flat areas[J]. Journal of Tianjin University (Science andTechnology), 2019, 52(9): 969-978.
    [10] 储成伍. 深基坑开挖对邻近铁路路基变形的影响[J]. 铁道建筑,2021,61(3): 83-86,102. doi: 10.3969/j.issn.1003-1995.2021.03.19

    CHU Chengwu. Influence of deep foundation pit excavation on adjacent railway subgrade deformation[J]. Railway Engineering, 2021, 61(3): 83-86,102. doi: 10.3969/j.issn.1003-1995.2021.03.19
    [11] 张治国,黄茂松,王卫东. 邻近开挖对既有软土隧道的影响[J]. 岩土力学,2009,30(5): 1373-1380. doi: 10.3969/j.issn.1000-7598.2009.05.033

    ZHANG Zhiguo, HUANG Maosong, WANG Weidong. Responses of existing tunnels induced by adjacent excavation in soft soils[J]. Rock and Soil Mechanics, 2009, 30(5): 1373-1380. doi: 10.3969/j.issn.1000-7598.2009.05.033
    [12] WINKLER E. Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc[M]. Prag: [s. n. ], 1867.
    [13] POULOS H G, CHEN L T. Pile response due to excavation-induced lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 94-99. doi: 10.1061/(ASCE)1090-0241(1997)123:2(94)
    [14] KLAR A, VORSTER T E B, SOGA K, et al. Soil—pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [15] VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410. doi: 10.1061/(ASCE)1090-0241(2005)131:11(1399)
    [16] RALPH PECK B. Deep Excavation and tunneling in soft ground. state-of-the-art report[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico: [s. n. ], 1969, 4: 225-290.
    [17] 张坤勇,王宇,艾英钵. 任意荷载下管土相互作用解答[J]. 岩土工程学报,2010,32(8): 1189-1193.

    ZHANG Kunyong, WANG Yu, AI Yingbo. Analytical solution to interaction between pipelines and soils under arbitrary loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1189-1193.
    [18] 黄义,何芳社. 弹性地基上的梁、板、壳[M]. 北京:科学出版社,2005.
    [19] 张陈蓉,蔡建鹏,黄茂松. 基坑开挖对邻近地埋管线的影响分析[J]. 岩土工程学报,2010,32(增2): 154-157.

    ZHANG Chenrong, CAI Jianpeng, HUANG Maosong. Influence of deep excavation on adjacent underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 154-157.
    [20] 朱晓宇,黄茂松,张陈蓉. 基坑开挖对邻近桩基础影响分析的DCFEM法[J]. 岩土工程学报,2010,32(增1): 181-185.

    ZHU Xiaoyu, HUANG Maosong, Zhang Chen-rong. Displacement-controlled FEM for analyzing influences of excavation of foundation pits on adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 181-185.
    [21] 唐孟雄,赵锡宏. 深基坑周围地表任意点移动变形计算及应用[J]. 同济大学学报(自然科学版),1996,24(3): 238-244.

    TANG Mengxiong, ZHAO Xihong. Ground setttement and deformation calculation and application in deep excavation[J]. Journal of Tongji University (Natural Science), 1996, 24(3): 238-244.
    [22] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [23] 陈博浪. 软土地基多道支撑基坑稳定性的强度参数折减有限元分析[D]. 杭州:浙江大学,2011.
    [24] 方晨昱. 杭州某地铁端头井基坑变形分析[D]. 杭州:浙江工业大学,2015.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 录用日期:  2024-11-21
  • 网络出版日期:  2024-12-07

目录

    /

    返回文章
    返回