• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于参数优先级划分的飞轮电机多目标优化

张维煜 李凯 杨鑫

张维煜, 李凯, 杨鑫. 基于参数优先级划分的飞轮电机多目标优化[J]. 西南交通大学学报, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845
引用本文: 张维煜, 李凯, 杨鑫. 基于参数优先级划分的飞轮电机多目标优化[J]. 西南交通大学学报, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845
ZHANG Weiyu, LI Kai, YANG Xin. Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845
Citation: ZHANG Weiyu, LI Kai, YANG Xin. Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845

基于参数优先级划分的飞轮电机多目标优化

doi: 10.3969/j.issn.0258-2724.20220845
基金项目: 国家自然科学基金(52077099)
详细信息
    作者简介:

    张维煜(1986—),女,教授,博导,研究方向为磁悬浮飞轮电池系统,E-mail:zwy@ujs.edu.cn

  • 中图分类号: TM30;TP18

Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division

  • 摘要:

    为改善电机转矩性能,同时降低永磁材料成本,首先,根据飞轮电池的运行模式,提出飞轮电机的设计要求,并选取输出转矩、转矩脉动和永磁体用量为设计目标;在此基础上,采用等效磁路法和有限元法计算电机的主要尺寸和性能,同时确定合适的槽极配合以及初始结构参数;其次,使用相关系数法分析该电机各结构参数与优化目标之间的相关性,并合理划分转子尺寸和定子尺寸的优先级;最后,采用有限元代理模型和多目标优化算法(非支配排序遗传算法Ⅱ,NSGA-Ⅱ)相结合的方法对设计参数进行逐级寻优,并通过场路联合仿真和样机实验进行验证. 研究结果表明:采用参数优先级划分的方式可以减少优化过程中数据点的采样,缩短了整个过程中有限元分析的时间;优化后,电机反电势梯形化程度更高,转矩脉动减小了40%,永磁体用量降低了8%.

     

  • 图 1  飞轮电池结构示意

    Figure 1.  Structure of flywheel battery

    图 2  飞轮电池运行模式、电机设计要求和运行状态三者间的关系

    Figure 2.  Relationship among operating modes of flywheel battery, design requirements, and operating states of motor

    图 3  电机有限元模型和空载磁密云图

    Figure 3.  Finite element model of motor and magnetic field distribution of motor under no load

    图 4  表贴式永磁同步电机参数化模型

    Figure 4.  Parameterized model of SPMSM

    图 5  设计变量对目标的灵敏度

    Figure 5.  Sensitivity of design variables to objectives

    图 6  DOE采样点的分布

    Figure 6.  Distribution of sampling points by DOE

    图 7  NSGA-Ⅱ的流程

    Figure 7.  Flowchart of NSGA-Ⅱ

    图 8  优先级1有限元代理模型

    Figure 8.  Finite element surrogate model in priority 1

    图 9  优先级1帕累托前沿

    Figure 9.  Pareto front in priority 1

    图 10  优先级2有限元代理模型

    Figure 10.  Finite element surrogate model in priority 2

    图 11  优先级2帕累托前沿

    Figure 11.  Pareto front in priority 2

    图 12  优化前后反电势波形和谐波分析

    Figure 12.  Back electromotive force waveforms and harmonics analysis before and after optimization

    图 13  优化前后转矩波形和谐波分析

    Figure 13.  Torque waveforms and harmonics analysis before and after optimization

    图 14  飞轮电池样机和电机样机

    Figure 14.  Prototypes of flywheel battery and motor

    图 15  联合仿真驱动控制框图

    Figure 15.  Co-simulation drive and control

    图 16  实测和仿真波形

    Figure 16.  Measured and simulated waveforms

    图 17  不同电流时电机转矩仿真值和实测计算值对比

    Figure 17.  Comparison of simulated and measured torque values of motor with different currents

    表  1  SPMSM主要尺寸参数

    Table  1.   Main size parameters of SPMSM

    参数电机
    12 极 14 槽24 极 28 槽
    转速/(r·min−14000
    驱动方式无刷直流
    有效轴长/mm8
    转子外径/mm100
    定子外径/mm73
    定子内径/mm40
    气隙长度/mm0.5
    永磁体用量/kg0.02
    导体线径/mm0.6 (8 股并绕)
    电流密度/(A·mm−28
    槽满率/%75
    槽总面积/mm29121248
    每相串联匝数/匝3648
    反电势平均值/V6.528.70
    输出转矩/(N·m)0.781.03
    下载: 导出CSV

    表  2  电机设计变量初始值和优化范围

    Table  2.   Initial value and optimal ranges of motor design variables mm

    设计变量初值范围
    Hs01.0[0.8,1.2]
    Hs10.5[0.4,0.6]
    Hs210[8,12]
    Bs02.0[1.6,2.4]
    Bs16.0[4.8,7.2]
    aPM0.90[0.64,0.96]
    hPM1.6[1.2,1.8]
    hg0.5[0.2,0.8]
    下载: 导出CSV

    表  3  参数优先级

    Table  3.   Priority of parameters

    优先级目标参数变量
    优先级 1TavgTrHs0Hs1Hs2Bs1
    优先级 2TavgTrVPMaPMhPMhg
    下载: 导出CSV

    表  4  NSGA-Ⅱ算法的参数设定值

    Table  4.   Parameter setting values of NSGA-II algorithm

    参数设定值
    初始种群/个100
    迭代数目/个80
    交叉概率/%90
    变异概率/%5
    最大迭代次数/次20
    最大允许帕累托百分比/%70
    下载: 导出CSV

    表  5  优先级1优化结果

    Table  5.   Optimization results in in priority 1

    设计变量初始点优化结果
    Hs0/mm1.00.8
    Hs1/mm0.50.4
    Hs2/mm10.011.9
    Bs1/mm6.005.58
    Tavg /(N·m)1.041.08
    Tr/%20.916.1
    Kf/%7675
    下载: 导出CSV

    表  6  优先级2优化结果

    Table  6.   Optimization results in priority 2

    设计变量优先级 1 结果优先级 2 优化结果
    aPM /mm0.90.8
    hPM/mm1.601.25
    hg/mm0.50.6
    Tavg/(N·m)1.081.02
    Tr/%16.114.7
    VPM /mm324302234
    下载: 导出CSV
  • [1] 张维煜,张林东,于焰均. 磁悬浮支承-飞轮系统稳定运行关键技术综述[J]. 西南交通大学学报,2022,57(3): 627-639.

    ZHANG Weiyu, ZHANG Lindong, YU Yanjun. Review on key technologies of stable operation for magnetic suspension support-flywheel system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 627-639.
    [2] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [3] LIU K, YIN M, HUA W, et al. Design and optimization of an external rotor ironless BLDCM used in a flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
    [4] LIU Z Q, WANG K, LI F. Design and analysis of permanent magnet homopolar machine for flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2019, 55(7): 8105706.1-8105706.6.
    [5] 汤平华,漆亚梅,黄国辉,等. 定子无铁心飞轮电机绕组涡流损耗分析[J]. 电工技术学报,2010,25(3): 27-32.

    TANG Pinghua, QI Yamei, HUANG Guohui, et al. Eddy Current loss analysis of ironless flywheel electric machine’s winding[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 27-32.
    [6] 付兴贺,江政龙,吕鸿飞,等. 电励磁同步电机无刷励磁与转矩密度提升技术发展综述[J]. 电工技术学报,2022,37(7): 1689-1702.

    FU Xinghe, JIANG Zhenglong, LÜ Hongfei, et al. Review of the blushless excitation and torque density improvement in wound field synchronous motors[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1689-1702.
    [7] LIU G H, ZENG Y, ZHAO W X, et al. Permanent magnet shape using analytical feedback function for torque improvement[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4619-4630. doi: 10.1109/TIE.2017.2772142
    [8] 胡鹏飞,王东,靳栓宝,等. 弓形磁极永磁电机谐波削极技术的优化研究[J]. 中国电机工程学报,2020,40(18): 5987-5997.

    HU Pengfei, WANG Dong, JIN Shuanbao, et al. Research on the optimization of harmonic pole shaping technologies for arcuate pole permanent magnet motors[J]. Proceedings of the CSEE, 2020, 40(18): 5987-5997.
    [9] 赵品志,杨贵杰,李勇. 三次谐波注入式五相永磁同步电机转矩密度优化[J]. 中国电机工程学报,2010,30(33): 71-77.

    ZHAO Pinzhi, YANG Guijie, LI Yong. Torque density optimization for five-phase PMSM with third harmonic injection[J]. Proceedings of the CSEE, 2010, 30(33): 71-77.
    [10] 殷明,王森,陶侃凯,等. 双圈磁钢飞轮电机的设计及优化[J]. 飞控与探测,2020,3(2): 75-80.

    YIN Ming, WANG Sen, TAO Kankai, et al. Design and optimization of a double-circle permanent magnet motor used in reaction flywheel system[J]. Flight Control & Detection, 2020, 3(2): 75-80.
    [11] KIM K H, PARK H I, JANG S M, et al. Comparison of characteristics of double-sided permanent-magnet synchronous motor/generator according to magnetization patterns for flywheel energy storage system using an analytical method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
    [12] 罗成,张昆仑,王滢. 永磁电磁混合Halbach阵列电动悬浮的稳定性控制[J]. 西南交通大学学报,2022,57(3): 574-581.

    LUO Cheng, ZHANG Kunlun, WANG Ying. Stability control of electrodynamic suspension with permanent magnet and electromagnet hybrid Halbach array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581.
    [13] ZHU X Y, WU W Q, QUAN L, et al. Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost[J]. IEEE Transactions on Energy Conversion, 2019, 34(3): 1178-1189. doi: 10.1109/TEC.2018.2886316
    [14] XU G H, ZHAO W X, LIU G H, et al. Torque performance improvement of consequent-pole PM motors with hybrid rotor configuration[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1561-1572. doi: 10.1109/TTE.2020.3041194
    [15] 张邦富,程明,王飒飒,等. 基于改进型代理模型优化算法的磁通切换永磁直线电机优化设计[J]. 电工技术学报,2020,35(5): 1013-1021.

    ZHANG Bangfu, CHENG Ming, WANG Sasa, et al. Optimal design of flux-switching permanent magnet linear machine based on improved surrogate-based optimization algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1013-1021.
    [16] XU L, ZHAO W X, LIU G H, et al. Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3446-3456. doi: 10.1109/TVT.2019.2902729
    [17] 刘国海,王艳阳,陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报,2018,33(增2): 385-393.

    LIU Guohai, WANG Yanyang, CHEN Qian. Multi-objective optimization of an asymmetric V-shaped interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393.
    [18] 赵玫,于帅,邹海林,等. 聚磁式横向磁通永磁直线电机的多目标优化[J]. 电工技术学报,2021,36(17): 3730-3740.

    ZHAO Mei, YU Shuai, ZOU Hailin, et al. Multi-objective optimization of transverse flux permanent magnet linear machine with the concentrated flux mover[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3730-3740.
    [19] 张河山,邓兆祥,妥吉英,等. 基于改进人工蜂群算法的轮毂电机多目标优化[J]. 西南交通大学学报,2019,54(4): 671-678.

    ZHANG Heshan, DENG Zhaoxiang, TUO Jiying, et al. Multi-objective optimum design for in-wheel motor based on improved artificial bee colony algorithm[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 671-678.
    [20] 陈云云,朱孝勇,全力,等. 基于参数敏感度的双凸极永磁型双定子电机的优化设计和性能分析[J]. 电工技术学报,2017,32(8): 160-168. doi: 10.19595/j.cnki.1000-6753.tces.2017.08.019

    CHEN Yunyun, ZHU Xiaoyong, QUAN Li, et al. Parameter sensitivity optimization design and performance analysis of double-salient permanent-magnet double-stator machine[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 160-168. doi: 10.19595/j.cnki.1000-6753.tces.2017.08.019
    [21] LEI G, LIU C C, ZHU J G, et al. Techniques for multilevel design optimization of permanent magnet motors[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1574-1584. doi: 10.1109/TEC.2015.2444434
    [22] ZHAO W X, YAO T, XU L, et al. Multi-objective optimization design of a modular linear permanent-magnet vernier machine by combined approximation models and differential evolution[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 4634-4645. doi: 10.1109/TIE.2020.2988233
    [23] 李培强,李慧,李欣然. 基于灵敏度与相关性的综合负荷模型参数优化辨识策略[J]. 电工技术学报,2016,31(16): 181-188.

    LI Peiqiang, LI Hui, LI Xinran. Optimized identification strategy for composite load model parameters based on sensitivity and correlation analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 181-188.
    [24] SUN X D, SHI Z, LEI G, et al. Multi-objective design optimization of an IPMSM based on multilevel strategy[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 139-148. doi: 10.1109/TIE.2020.2965463
    [25] CROUX C, DEHON C. Influence functions of the Spearman and Kendall correlation measures[J]. Statistical Methods & Applications, 2010, 19(4): 497-515.
    [26] 黄允凯,周涛. 基于等效磁路法的轴向永磁电机效率优化设计[J]. 电工技术学报,2015,30(2): 73-79.

    HUANG Yunkai, ZHOU Tao. Efficiency optimization design of axial flux permanent magnet machines using magnetic equivalent circuit[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 73-79.
    [27] 周扬,周瑾,张越,等. 基于RBF近似模型的磁悬浮轴承结构优化设计[J]. 西南交通大学学报,2022,57(3): 682-692.

    ZHOU Yang, ZHOU Jin, ZHANG Yue, et al. Optimum structural design of active magnetic bearing based on RBF approximation model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692.
    [28] LIU G H, WANG Y Y, CHEN Q, et al. Multiobjective deterministic and robust optimization design of a new spoke-type permanent magnet machine for the improvement of torque performance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10202-10212. doi: 10.1109/TIE.2019.2962472
    [29] LI Y W, ZHU C S, WU L J, et al. Multi-objective optimal design of high-speed surface-mounted permanent magnet synchronous motor for magnetically levitated flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2019, 55(7): 8202708.1-8202708.8.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  84
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-03-24
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回