• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

列车荷载作用下的磁浮轨道梁响应极值条件

向活跃 刘科宏 李永乐

向活跃, 刘科宏, 李永乐. 列车荷载作用下的磁浮轨道梁响应极值条件[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220835
引用本文: 向活跃, 刘科宏, 李永乐. 列车荷载作用下的磁浮轨道梁响应极值条件[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220835
XIANG Huoyue, LIU Kehong, LI Yongle. Extremum Conditions of Response of Maglev Guideway Under Train Loads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220835
Citation: XIANG Huoyue, LIU Kehong, LI Yongle. Extremum Conditions of Response of Maglev Guideway Under Train Loads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220835

列车荷载作用下的磁浮轨道梁响应极值条件

doi: 10.3969/j.issn.0258-2724.20220835
基金项目: 国家自然科学基金项目(52322811,51978589)
详细信息
    作者简介:

    向活跃(1986—),男,副教授,博士,研究方向为桥梁风工程与车桥耦合振动,E-mail:hy@swjtu.edu.cn

  • 中图分类号: U441.3

Extremum Conditions of Response of Maglev Guideway Under Train Loads

  • 摘要:

    为研究磁浮轨道梁动力响应的变化规律,将磁浮列车简化为移动的均布荷载,采用解析法得到简支轨道梁动力响应的解析解,并讨论轨道梁最大值随车速、跨度等参数的变化规律,推导磁浮轨道梁动力响应的极值条件,利用有限元方法和车-桥耦合振动方法进行验证. 结果表明:列车与轨道梁跨度比值较大时,随列车速度的增加轨道梁跨中最大响应以波动形式增加,最大响应存在极值,轨道梁响应随轨道梁跨度、质量等参数也有类似规律;当车速和跨度的乘积为特定常数,或轨道梁一阶竖弯频率与跨度的乘积为车速特定倍数时,轨道梁产生消振现象.

     

  • 图 1  磁浮列车过桥示意

    Figure 1.  Schematic diagram of maglev train crossing bridge

    图 2  阶段Ⅰ、Ⅱ轨道梁最大跨中响应比较

    Figure 2.  Comparison of the maximum midspan response of the guideway at stage Ⅰ and stage Ⅱ

    图 3  辅助角变化趋势

    Figure 3.  Change trend of auxiliary angle

    图 4  不同z时式(29)的取值

    Figure 4.  Values of Eq. (29) under different z

    图 5  轨道梁横截面示意图(单位:m)

    Figure 5.  Cross section of guideway (unit: m)

    图 6  不同阶段结果对比

    Figure 6.  Comparison of results at different stages

    图 7  解析法与有限元法结果比较

    Figure 7.  Comparison of analytical method and FEM

    图 8  消振车速下阶段Ⅱ振动分解

    Figure 8.  Vibration decomposition diagram at stage Ⅱ at a train speed producing vibration isolation

    图 9  解析法与耦合振动法结果比较

    Figure 9.  Comparison of analytical method and coupling vibration method

    表  1  φ取值表

    Table  1.   Value of the auxiliary angle φ

    车速范围/
    (km·h−1
    φ取值/rad 备注
    $ \left[\dfrac{{W{L_{\text{b}}}}}{{{\text{π}} + 2k{\text{π}} }},\dfrac{{W{L_{\text{b}}}}}{{2k{\text{π}} }}\right] $ $ \dfrac{{W{L_{\text{b}}}}}{{2V}} - \dfrac{{\text{π}} }{2} - k{\text{π}} $ $k = 1,2,\cdots $
    $ \left[\dfrac{{W{L_{\text{b}}}}}{{2{\text{π}} + 2k{\text{π}} }},{\dfrac{{W{L_{\text{b}}}}}{{{\text{π}}+ 2k{\text{π}} }} }\right) $ $ \dfrac{{W{L_{\text{b}}}}}{{2V}} - \dfrac{{\text{π}} }{2} - (k + 1){\text{π}} $ $k = 0,1,\cdots $
    $ \left({\dfrac{{W{L_{\text{b}}}}}{{\text{π}} }}, + \infty \right) $ $ \dfrac{{W{L_{\text{b}}}}}{{2V}} - \dfrac{{\text{π}} }{2} $
    下载: 导出CSV
  • [1] LIN G B, SHENG X W. Application and further development of maglev transportation in China[J]. Transportation Systems and Technology, 2018, 4(3): 36-43 doi: 10.17816/transsyst20184336-43
    [2] ZHANG L, HUANG J Y. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method[J]. Engineering Structures, 2019, 180: 1-17. doi: 10.1016/j.engstruct.2018.11.031
    [3] PALMER C. Engineered to go fast, maglev trains inch forward[J]. Engineering, 2021, 7(7): 891-893. doi: 10.1016/j.eng.2021.06.001
    [4] LI M, LUO S H, MA W H, et al. Experimental study on dynamic performance of medium and low speed maglev train-track-bridge system[J]. International Journal of Rail Transportation, 2021, 9(3): 232-255. doi: 10.1080/23248378.2020.1798294
    [5] LIANG X, JIANG T, HONG Y, et al. Vibration response analysis of simply supported box girder bridge-maglev train in accelerated test of Changsha maglev express[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 9563747.1-9563747.18.
    [6] 李小珍,金鑫,王党雄,等. 长沙中低速磁浮运营线列车-桥梁系统耦合振动试验研究[J]. 振动与冲击,2019,38(13): 57-63.

    LI Xiaozhen, JIN Xin, WANG Dangxiong, et al. Tests for coupled vibration of a train-bridge system on Changsha low-medium speed maglev line[J]. Journal of Vibration and Shock, 2019, 38(13): 57-63.
    [7] KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039
    [8] TIAN X F, XIANG H Y, ZHU J, et al. Effect of long-wave deviation of stator plane on high-speed maglev train and guideway system[J]. Journal of Vibration and Control, 2023, 29(9/10): 2348-2362.
    [9] WANG D X, LI X Z, LIANG L, et al. Dynamic interaction analysis of bridges induced by a low-to-medium-speed maglev train[J]. Journal of Vibration and Control, 2020, 26(21/22): 2013-2025.
    [10] XIANG H Y, TIAN X F, LI Y L, et al. Dynamic interaction analysis of high-speed maglev train and guideway with a control loop failure[J]. International Journal of Structural Stability and Dynamics, 2022, 22(10): 2241012.1-2241012.28.
    [11] YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway[J]. Journal of Sound and Vibration, 2009, 321(1/2): 184-200.
    [12] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210. doi: 10.1076/vesd.38.3.185.8289
    [13] ZHENG X J, WU J J, ZHOU Y H. Numerical analyses on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways[J]. Journal of Sound and Vibration, 2000, 235(1): 43-61. doi: 10.1006/jsvi.1999.2911
    [14] 王贞,侯金佑,吴斌,等. 高速磁浮列车-桥梁耦合振动实时混合试验的数值仿真研究[J]. 振动与冲击,2022,41(8): 270-276.

    WANG Zhen, HOU Jinyou, WU Bin, et al. A numerical simulation study of a real-time hybrid test for high-speed maglev train-bridge coupling vibration[J]. Journal of Vibration and Shock, 2022, 41(8): 270-276.
    [15] 陈绪黎,向活跃,田祥富,等. 常导高速磁浮桥梁预拱度形式研究[J]. 振动工程学报,2023,36(3): 652-661.

    CHEN Xuli, XIANG Huoyue, TIAN Xiangfu, et al. Analysis on pre-camber forms of high-speed EMS maglev bridge[J]. Journal of Vibration Engineering, 2023, 36(3): 652-661.
    [16] ZHANG L, HUANG J Y. Stiffness of coupling connection and bearing support for high-speed maglev guideways[J]. Journal of Bridge Engineering, 2018, 23(9): 04018064.1-04018064.14
    [17] 邓建良,吴定俊,李奇. 移动均布荷载作用下简支梁桥动力系数分析[J]. 工程力学,2013,30(5): 56-62.

    DENG Jianliang, WU Dingjun, LI Qi. Impact factor analysis of simply-supported girder bridges traversed by uniformly-distributed moving loads[J]. Engineering Mechanics, 2013, 30(5): 56-62.
    [18] WANG H P, LI J, ZHANG K. Vibration analysis of the maglev guideway with the moving load[J]. Journal of Sound and Vibration, 2007, 305(4/5): 621-640.
    [19] SONG X D, WU D J, LI Q. Dynamic impact analysis of double-tower cable-stayed maglev bridges using a simple model[J]. Journal of Bridge Engineering, 2014, 19(1): 34-43. doi: 10.1061/(ASCE)BE.1943-5592.0000498
    [20] 中华人民共和国住房和城乡建设部. 高速磁浮交通设计标准:CJJ/T 310—2021[S]. 北京:中国建筑工业出版社,2019.
    [21] REN S B, ROMEIJN A, KLAP K. Dynamic simulation of the maglev vehicle/guideway system[J]. Journal of Bridge Engineering, 2010, 15(3): 269-278. doi: 10.1061/(ASCE)BE.1943-5592.0000071
    [22] WANG Z L, XU Y L, LI G Q, et al. Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility[J]. Vehicle System Dynamics, 2019, 57(2): 161-191. doi: 10.1080/00423114.2018.1450517
    [23] 吴祥明. 磁浮列车[M]. 上海:上海科学技术出版社,2003.
    [24] SHI J, FANG W S, WANG Y J, et al. Measurements and analysis of track irregularities on high speed maglev lines[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(6): 385-394. doi: 10.1631/jzus.A1300163
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  14
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-03-16
  • 网络出版日期:  2024-10-14

目录

    /

    返回文章
    返回