• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

ECC桥面板中栓钉抗剪性能试验研究与数值分析

刘益铭 张清华 卜一之

刘益铭, 张清华, 卜一之. ECC桥面板中栓钉抗剪性能试验研究与数值分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220824
引用本文: 刘益铭, 张清华, 卜一之. ECC桥面板中栓钉抗剪性能试验研究与数值分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220824
LIU Yiming, ZHANG Qinghua, BU Yizhi. Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220824
Citation: LIU Yiming, ZHANG Qinghua, BU Yizhi. Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220824

ECC桥面板中栓钉抗剪性能试验研究与数值分析

doi: 10.3969/j.issn.0258-2724.20220824
基金项目: 国家自然科学基金项目(52008218);中国博士后科学基金(2022M710048)
详细信息
    作者简介:

    刘益铭(1987—),男,副教授,博士,研究方向为桥梁与隧道工程,E-mail:swjtu_lyming@126.com

    通讯作者:

    张清华(1975—),男,教授,博士,研究方向为桥梁与隧道工程,E-mail:swjtuzqh@126.com

  • 中图分类号: U443.32

Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks

  • 摘要:

    为研究栓钉在纤维增强水泥基复合材料(ECC)中的抗剪性能,开展模型试验研究与有限元数值分析. 基于推出模型试验,明确ECC中栓钉的破坏模式,通过参数化有限元数值分析,进一步阐明栓钉直径、栓钉长径比、栓钉抗拉强度、ECC抗压强度对连接件抗剪性能及其失效模式的影响规律,并在上述研究的基础上,建立适用于ECC中栓钉抗剪承载力的计算方法. 研究表明: ECC中栓钉抗剪强度与推出模型的失效模式紧密相关,当推出模型的破坏模式表现为ECC压溃时,连接件的抗剪强度取决于ECC的抗压性能;当推出模型的破坏模式表现为栓钉剪断时,连接件的抗剪强度取决于栓钉的抗拉强度与ECC的抗压性能;提高ECC抗压强度与减小栓钉长径比均有利于提升连接件的抗剪刚度,但栓钉的抗拉强度对连接件的抗剪刚度影响较小;当栓钉长径比小于4.6时,栓钉抗剪强度随长径比的减小有所降低,建议采用长径比大于4.6的栓钉作为钢梁与ECC桥面板的剪力连接件.

     

  • 图 1  推出试验件尺寸

    Figure 1.  Dimensions of push-out specimen

    图 2  ECC应力-应变曲线

    Figure 2.  Stress-strain curves of ECC

    图 3  推出试验加载

    Figure 3.  Push-out test setup

    图 4  试验件剖面图与栓钉的传力模式

    Figure 4.  Cross-section of specimen and mechanism of load transfer for studs

    图 5  试验件荷载-滑移曲线

    Figure 5.  Load-slip curves for specimen

    图 6  试验抗剪强度与现行规范预测值的对比

    Figure 6.  Comparison of test results of shear strength with value predicted by existing codes

    图 7  有限元数值模型

    Figure 7.  Numerical model of finite element

    图 8  ECC本构关系

    Figure 8.  Constitutive relationship of ECC

    图 9  钢材本构关系

    Figure 9.  Constitutive relationship of steel

    图 10  数值模型中栓钉的破坏模式

    Figure 10.  Failure mode of studs in numerical model

    图 11  ECC结构层受压损伤

    Figure 11.  Compressive damage of ECC structural layer

    图 12  栓钉直径对荷载-滑移曲线的影响

    Figure 12.  Effect of stud diameter on load-slip curves

    图 13  ECC抗压强度对荷载-滑移曲线的影响

    Figure 13.  Effect of compressive strength of ECC on load-slip curves

    图 14  ECC抗压性能对栓钉抗剪强度的影响

    Figure 14.  Effect of compressive properties of ECC on shear strength of studs

    图 15  预测值与推出试验结果对比

    Figure 15.  Comparison of prediction results with push-out test results

    图 16  栓钉抗拉强度对荷载-滑移曲线的影响

    Figure 16.  Effect of tensile strength of studs on load-slip curves

    图 17  栓钉抗拉强度对抗剪强度的影响

    Figure 17.  Effect of tensile strength of studs on shear strength

    图 18  ECC抗压强度对栓钉抗剪刚度的影响

    Figure 18.  Effect of compressive strength of ECC on shear stiffness of studs

    图 19  栓钉抗拉强度对抗剪刚度的影响

    Figure 19.  Effect of tensile strength of studs on shear stiffness

    表  1  试验件构造参数

    Table  1.   Geometric parameters of specimen

    试验分组 hs/mm ds/mm 长径比
    S13 60 13 4.62
    S16 60 16 3.75
    S19 60 19 3.16
    下载: 导出CSV

    表  2  钢材基本力学性能

    Table  2.   Basic mechanical properties of steel

    钢材类型Es/GPafy/MPafu/MPa
    钢梁206365465
    钢筋206405536
    栓钉196315425
    下载: 导出CSV

    表  3  推出试验结果

    Table  3.   Push-out test results

    试验分组 ds/mm 长径比 承载力/kN 抗剪强度 Qu/MPa
    S13 13 4.62 54.5 410.9
    S16 16 3.75 77.8 387.1
    S19 19 3.16 92.9 328.3
    下载: 导出CSV
  • [1] LI V. Advances in ECC research[J]. ACI Special Publications,2002,206:373-400.
    [2] LI V. On engineered cementitious composites (ECC) a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230. doi: 10.3151/jact.1.215
    [3] 李福海,何肖云峰,吴昊南,等. 聚丙烯纤维增强混凝土梁变形性能的试验研究[J]. 西南交通大学学报,2021,56(4): 853-863.

    LI Fuhai, HE Xiaoyunfeng, WU Haonan, et al. Experimental study on deformation behavior of polypropylene fiber reinforced concrete beams[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 853-863.
    [4] 赵人达,占玉林,徐腾飞,等. 混凝土桥及其高性能材料2020年度研究进展[J]. 土木与环境工程学报(中英文),2021,43(增1): 12-22.

    ZHAO Renda, ZHAN Yulin, XU Tengfei, et al. Research progress of concrete bridge and its high performance materials in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 12-22.
    [5] FAN J S, GOU S K, DING R, et al. Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments[J]. Engineering Structures,2020,210:110309.1-11039.17.
    [6] WALTER R, OLESEN J F, STANG H, et al. Analysis of an orthotropic deck stiffened with a cement-based overlay[J]. Journal of Bridge Engineering,2007,12(3):350-363.
    [7] 张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报,2017,30(3): 14-30,39. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30,39. doi: 10.3969/j.issn.1001-7372.2017.03.002
    [8] 邓露,鲜亚兰,邵旭东. 轻型钢-UHPC组合桥面板的疲劳可靠性评估[J]. 中南大学学报(自然科学版),2018,49(3): 711-717. doi: 10.11817/j.issn.1672-7207.2018.03.026

    DENG Lu, XIAN Yalan, SHAO Xudong. Fatigue reliability assessment of light-weighted steel-UHPC composite bridge deck[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 711-717. doi: 10.11817/j.issn.1672-7207.2018.03.026
    [9] 占玉林,李贵峰,赵人达,等. 有机聚合物剪力键的破坏机理及承载能力研究[J]. 西南交通大学学报,2017,52(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012

    ZHAN Yulin, LI Guifeng, ZHAO Renda, et al. Failure mechanism and shear capacity of organic polymer shear connectors[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012
    [10] QIAN S Z, LI V. Influence of concrete material ductility on shear response of stud connections[J]. ACI Materials Journal, 2006, 103(1): 60-66.
    [11] LIU Y M, ZHANG Q H, BAO Y, et al. Static and fatigue push-out tests of short headed shear studs embedded in Engineered Cementitious Composites (ECC)[J]. Engineering Structures, 2019, 182: 29-38. doi: 10.1016/j.engstruct.2018.12.068
    [12] GUAN Y H, WU J J, SUN R J, et al. Shear behavior of short headed studs in Steel-ECC composite structure[J]. Engineering Structures, 2022, 250: 113423.1-113423.15.
    [13] European Committee for Standardization. Design of steel structures: part 1-1: general rules and rules for buildings: EN 1993-1-1: 2005[S]. Brussels: European Committee for Standardization, 2005.
    [14] American Association of State Highway and Transportation Officials. AASHTO LRFD bridge design specifications: AASHTO LRFD[S]. Washington D. C.: American Association of State Highway and Transportation Officials, 2005.
    [15] 中华人民共和国住房和城乡建设部. 钢-混凝土组合桥梁设计规范:GB 50917—2013[S]. 北京:中国建筑工业出版社,2014.
    [16] 丁楠. 超高性能混凝土对轻型组合桥面结构疲劳寿命的影响研究[D]. 长沙:湖南大学,2014.
    [17] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering, 2015, 27(1): 04014111.1-04014111.10.
    [18] MENG D, HUANG T, ZHANG Y X, et al. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients[J]. Construction and Building Materials, 2017, 141: 259-270. doi: 10.1016/j.conbuildmat.2017.02.158
    [19] NGUYEN H T, KIM S E. Finite element modeling of push-out tests for large stud shear connectors[J]. Journal of Constructional Steel Research, 2009, 65(10/11): 1909-1920.
    [20] XUE W C, DING M, WANG H, et al. Static behavior and theoretical model of stud shear connectors[J]. Journal of Bridge Engineering, 2008, 13(6): 623-634. doi: 10.1061/(ASCE)1084-0702(2008)13:6(623)
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  58
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-04-05
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回