Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks
-
摘要:
为研究栓钉在纤维增强水泥基复合材料(ECC)中的抗剪性能,开展模型试验研究与有限元数值分析. 基于推出模型试验,明确ECC中栓钉的破坏模式,通过参数化有限元数值分析,进一步阐明栓钉直径、栓钉长径比、栓钉抗拉强度、ECC抗压强度对连接件抗剪性能及其失效模式的影响规律,并在上述研究的基础上,建立适用于ECC中栓钉抗剪承载力的计算方法. 研究表明: ECC中栓钉抗剪强度与推出模型的失效模式紧密相关,当推出模型的破坏模式表现为ECC压溃时,连接件的抗剪强度取决于ECC的抗压性能;当推出模型的破坏模式表现为栓钉剪断时,连接件的抗剪强度取决于栓钉的抗拉强度与ECC的抗压性能;提高ECC抗压强度与减小栓钉长径比均有利于提升连接件的抗剪刚度,但栓钉的抗拉强度对连接件的抗剪刚度影响较小;当栓钉长径比小于4.6时,栓钉抗剪强度随长径比的减小有所降低,建议采用长径比大于4.6的栓钉作为钢梁与ECC桥面板的剪力连接件.
-
关键词:
- 桥梁工程 /
- 栓钉 /
- 推出试验 /
- 抗剪性能 /
- 纤维增强水泥基复合材料
Abstract:In order to study the shear behavior of studs embedded in engineered cementitious composites (ECC), model tests and the numerical analysis of finite elements were carried out. The failure mode of studs embedded in ECC was determined based on push-out model tests. Then, parametric numerical analysis of finite element was performed to elucidate the effects of stud diameter, height/diameter ratio of stud, tensile strength of stud, and compressive strength of ECC on the shear behavior and failure mode of connectors. Finally, a method for calculating the shear capacity of studs embedded in ECC was established according to the above research. The results show that the shear strength of studs embedded in ECC is closely related to the failure mode of the push-out model. When the push-out model fails due to ECC crushing, the shear strength of the connector depends on the compressive properties of ECC. When the push-out model fails due to stud fracture, the shear strength of the connector depends on the tensile strength of the stud and compressive properties of ECC; increasing the compressive strength of ECC and reducing the height/diameter ratio of the stud both can improve the shear stiffness of the connector, but the tensile strength of the stud has a slight effect on the shear stiffness of the connector. When the height/diameter ratio of the stud is lower than 4.6, the shear strength of the stud reduces with the decreasing height/diameter ratio of the stud. Studs with a height/diameter ratio of greater than 4.6 are recommended to serve as a shear connector applied in steel-ECC bridge decks.
-
Key words:
- bridge engineering /
- stud /
- push-out test /
- shear behavior /
- engineered cementitious composites
-
表 1 试验件构造参数
Table 1. Geometric parameters of specimen
试验分组 hs/mm ds/mm 长径比 S13 60 13 4.62 S16 60 16 3.75 S19 60 19 3.16 表 2 钢材基本力学性能
Table 2. Basic mechanical properties of steel
钢材类型 Es/GPa fy/MPa fu/MPa 钢梁 206 365 465 钢筋 206 405 536 栓钉 196 315 425 表 3 推出试验结果
Table 3. Push-out test results
试验分组 ds/mm 长径比 承载力/kN 抗剪强度 Qu/MPa S13 13 4.62 54.5 410.9 S16 16 3.75 77.8 387.1 S19 19 3.16 92.9 328.3 -
[1] LI V. Advances in ECC research[J]. ACI Special Publications,2002,206:373-400. [2] LI V. On engineered cementitious composites (ECC) a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230. doi: 10.3151/jact.1.215 [3] 李福海,何肖云峰,吴昊南,等. 聚丙烯纤维增强混凝土梁变形性能的试验研究[J]. 西南交通大学学报,2021,56(4): 853-863.LI Fuhai, HE Xiaoyunfeng, WU Haonan, et al. Experimental study on deformation behavior of polypropylene fiber reinforced concrete beams[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 853-863. [4] 赵人达,占玉林,徐腾飞,等. 混凝土桥及其高性能材料2020年度研究进展[J]. 土木与环境工程学报(中英文),2021,43(增1): 12-22.ZHAO Renda, ZHAN Yulin, XU Tengfei, et al. Research progress of concrete bridge and its high performance materials in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 12-22. [5] FAN J S, GOU S K, DING R, et al. Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments[J]. Engineering Structures,2020,210:110309.1-11039.17. [6] WALTER R, OLESEN J F, STANG H, et al. Analysis of an orthotropic deck stiffened with a cement-based overlay[J]. Journal of Bridge Engineering,2007,12(3):350-363. [7] 张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报,2017,30(3): 14-30,39. doi: 10.3969/j.issn.1001-7372.2017.03.002ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30,39. doi: 10.3969/j.issn.1001-7372.2017.03.002 [8] 邓露,鲜亚兰,邵旭东. 轻型钢-UHPC组合桥面板的疲劳可靠性评估[J]. 中南大学学报(自然科学版),2018,49(3): 711-717. doi: 10.11817/j.issn.1672-7207.2018.03.026DENG Lu, XIAN Yalan, SHAO Xudong. Fatigue reliability assessment of light-weighted steel-UHPC composite bridge deck[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 711-717. doi: 10.11817/j.issn.1672-7207.2018.03.026 [9] 占玉林,李贵峰,赵人达,等. 有机聚合物剪力键的破坏机理及承载能力研究[J]. 西南交通大学学报,2017,52(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012ZHAN Yulin, LI Guifeng, ZHAO Renda, et al. Failure mechanism and shear capacity of organic polymer shear connectors[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012 [10] QIAN S Z, LI V. Influence of concrete material ductility on shear response of stud connections[J]. ACI Materials Journal, 2006, 103(1): 60-66. [11] LIU Y M, ZHANG Q H, BAO Y, et al. Static and fatigue push-out tests of short headed shear studs embedded in Engineered Cementitious Composites (ECC)[J]. Engineering Structures, 2019, 182: 29-38. doi: 10.1016/j.engstruct.2018.12.068 [12] GUAN Y H, WU J J, SUN R J, et al. Shear behavior of short headed studs in Steel-ECC composite structure[J]. Engineering Structures, 2022, 250: 113423.1-113423.15. [13] European Committee for Standardization. Design of steel structures: part 1-1: general rules and rules for buildings: EN 1993-1-1: 2005[S]. Brussels: European Committee for Standardization, 2005. [14] American Association of State Highway and Transportation Officials. AASHTO LRFD bridge design specifications: AASHTO LRFD[S]. Washington D. C.: American Association of State Highway and Transportation Officials, 2005. [15] 中华人民共和国住房和城乡建设部. 钢-混凝土组合桥梁设计规范:GB 50917—2013[S]. 北京:中国建筑工业出版社,2014. [16] 丁楠. 超高性能混凝土对轻型组合桥面结构疲劳寿命的影响研究[D]. 长沙:湖南大学,2014. [17] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering, 2015, 27(1): 04014111.1-04014111.10. [18] MENG D, HUANG T, ZHANG Y X, et al. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients[J]. Construction and Building Materials, 2017, 141: 259-270. doi: 10.1016/j.conbuildmat.2017.02.158 [19] NGUYEN H T, KIM S E. Finite element modeling of push-out tests for large stud shear connectors[J]. Journal of Constructional Steel Research, 2009, 65(10/11): 1909-1920. [20] XUE W C, DING M, WANG H, et al. Static behavior and theoretical model of stud shear connectors[J]. Journal of Bridge Engineering, 2008, 13(6): 623-634. doi: 10.1061/(ASCE)1084-0702(2008)13:6(623)