• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种高静-低动刚度磁弹簧的建模与特性分析

张明 谢延松 李洪涛 孙凤 徐方超 张磊

张明, 谢延松, 李洪涛, 孙凤, 徐方超, 张磊. 一种高静-低动刚度磁弹簧的建模与特性分析[J]. 西南交通大学学报, 2023, 58(4): 933-939, 946. doi: 10.3969/j.issn.0258-2724.20220821
引用本文: 张明, 谢延松, 李洪涛, 孙凤, 徐方超, 张磊. 一种高静-低动刚度磁弹簧的建模与特性分析[J]. 西南交通大学学报, 2023, 58(4): 933-939, 946. doi: 10.3969/j.issn.0258-2724.20220821
ZHANG Ming, XIE Yansong, LI Hongtao, SUN Feng, XU Fangchao, ZHANG Lei. Modeling and Characteristic Analysis of a Magnetic Spring with High Static Stiffness and Low Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 933-939, 946. doi: 10.3969/j.issn.0258-2724.20220821
Citation: ZHANG Ming, XIE Yansong, LI Hongtao, SUN Feng, XU Fangchao, ZHANG Lei. Modeling and Characteristic Analysis of a Magnetic Spring with High Static Stiffness and Low Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 933-939, 946. doi: 10.3969/j.issn.0258-2724.20220821

一种高静-低动刚度磁弹簧的建模与特性分析

doi: 10.3969/j.issn.0258-2724.20220821
基金项目: 国家自然科学基金(52005344,52005345);国家重点研发计划(2020YFC2006701);辽宁省自然科学基金(2022-MS-271);辽宁省教育厅青年项目(LJKQZ2021044);辽宁省教育厅科学研究经费(202007141)
详细信息
    通讯作者:

    张明(1988—),男,副教授,研究方向为磁力减震与柔性机器人技术,E-mail:mingzhang@sut.edu.cn

  • 中图分类号: TH135;TB535.1

Modeling and Characteristic Analysis of a Magnetic Spring with High Static Stiffness and Low Dynamic Stiffness

  • 摘要:

    为解决低频隔振领域存在的低固有频率和高承载力之间的矛盾,设计了一种新型高静-低动刚度磁弹簧元件. 首先,基于电磁场理论和分子电流法建立磁弹簧的弹簧力和刚度模型;其次,建立系统的动力学模型,同时分析线圈通入不同电流时对位移传递率的影响,并与等效线性弹簧进行比较;最后,研制实验样机并进行实验研究. 仿真与实验结果表明:磁弹簧气隙-刚度曲线呈先平缓后急剧的非线性关系,具有明显的高静-低动刚度特性;其刚度与电流近似线性关系,磁弹簧可通过改变电流实现较大范围的刚度调整,且刚度响应迅速;在未通入电流时,相对于等效线性弹簧,起始隔振频率和传递率峰值降低26%,在通入负向额定电流时,起始隔振频率和传递率峰值降低了41%.

     

  • 图 1  高静-低动刚度磁弹簧示意

    Figure 1.  Magnetic spring with high static stiffness and low dynamic stiffness

    图 2  高静-低动刚度磁弹簧工作原理

    Figure 2.  Working principle of magnetic spring with high static stiffness and low dynamic stiffness

    图 3  磁弹簧磁场分布

    Figure 3.  Magnetic field distribution of magnetic spring

    图 4  永磁体磁场分布

    Figure 4.  Magnetic field distribution of permanent magnet

    图 5  磁力理论计算与实验测量对比

    Figure 5.  Comparison of theoretically calculated magnetic force and experimentally measured magnetic force

    图 6  磁弹簧动力学模型

    Figure 6.  Dynamics model of magnetic spring

    图 7  磁弹簧理论刚度

    Figure 7.  Theoretical stiffness of magnetic spring

    图 8  振动传递率仿真对比

    Figure 8.  Simulation comparison of vibration transmissibility

    图 9  轴向磁力测量实验平台

    Figure 9.  Experimental platform formeasuring axial magnetic force

    图 10  轴向磁力与轴向气隙的关系

    Figure 10.  Relationship between axial magnetic force and axial air gap

    图 11  轴向磁力与电流的关系

    Figure 11.  Relationship between axial magnetic force and current

    图 12  轴向刚度与气隙的关系

    Figure 12.  Relationship between axial stiffness and air gap

    图 13  轴向刚度与电流的关系

    Figure 13.  Relationship between axial stiffness and current

    图 14  刚度阶跃响应

    Figure 14.  Stiffness step response

    表  1  高静-低动刚度磁弹簧结构参数

    Table  1.   Structural parameters of magnetic spring with high static stiffness and low dynamic stiffness mm

    参数 R1 R2 Zd1 Zd2 2L R3 R4 2Lm
    数值 15 30 15 15 20 35 52 52
    下载: 导出CSV
  • [1] 刘尚举,晏巨,陈虬. 电磁永磁混合悬浮隔振系统控制研究[J]. 西南交通大学学报,1999,34(3): 279-283. doi: 10.3969/j.issn.0258-2724.1999.03.006

    LIU Shangju, YAN Ju, CHEN Qiu. Study of controlling of an electromagnet and permanent magnet suspension isolation system[J]. Journal of Southwest Jiaotong University, 1999, 34(3): 279-283. doi: 10.3969/j.issn.0258-2724.1999.03.006
    [2] 韩俊淑,孙景工,孟令帅. 一种曲面-弹簧-滚子机构的非线性隔振器特性分析[J]. 振动与冲击,2019,38(3): 170-178. doi: 10.13465/j.cnki.jvs.2019.03.024

    HAN Junshu, SUN Jinggong, MENG Lingshuai. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element[J]. Journal of Vibration and Shock, 2019, 38(3): 170-178. doi: 10.13465/j.cnki.jvs.2019.03.024
    [3] 赵川,孙凤,裴文哲,等. 永磁悬浮平台的分散串级控制方法[J]. 西南交通大学学报,2022,57(3): 618-626.

    ZHAO Chuan, SUN Feng, PEI Wenzhe, et al. Independent cascade control method for permanent magnetic levitation platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 618-626.
    [4] 李爽,楼京俊,杨庆超,等. 双环永磁体型高静低动刚度隔振器设计、建模与试验研究[J]. 振动工程学报,2019,32(4): 675-684. doi: 10.16385/j.cnki.issn.1004-4523.2019.04.015

    LI Shuang, LOU Jingjun, YANG Qingchao, et al. Design and experiment of a vibration isolator using double-ring permanent magnets springs with negative stiffness[J]. Journal of Vibration Engineering, 2019, 32(4): 675-684. doi: 10.16385/j.cnki.issn.1004-4523.2019.04.015
    [5] 高双,朱翔,谌宗琦,等. 基于欧拉梁的准零刚度隔振系统动力特性分析[J]. 中国机械工程,2016,27(21): 2869-2876. doi: 10.3969/j.issn.1004-132X.2016.21.006

    GAO Shuang, ZHU Xiang, SHEN Zongqi, et al. Analyses on dynamics characteristics of a quasi-zero-stiffness vibration isolation system based on Euler beam[J]. China Mechanical Engineering, 2016, 27(21): 2869-2876. doi: 10.3969/j.issn.1004-132X.2016.21.006
    [6] CARRELLA A, BRENNAN M J, WATERS T P, et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008, 315(3): 712-720. doi: 10.1016/j.jsv.2008.01.046
    [7] ZHANG F, XU M L, SHAO S B, et al. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress[J]. Journal of Sound and Vibration, 2020, 476: 115322.1-115322.17
    [8] ZHOU N, LIU K. A tunable high-static-low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273. doi: 10.1016/j.jsv.2009.11.001
    [9] 王迎春,柴凯,刘树勇,等. 永磁体型高静低动刚度隔振器试验研究[J]. 噪声与振动控制,2019,39(5): 223-230. doi: 10.3969/j.issn.1006-1355.2019.05.042

    WANG Yingchun, CHAI Kai, LIU Shuyong, et al. Experimental study on the permanent magnets vibration isolators with high-static and low-dynamic stiffness[J]. Noise and Vibration Control, 2019, 39(5): 223-230. doi: 10.3969/j.issn.1006-1355.2019.05.042
    [10] ZHAO Y, YU J, WANG H, et al. Design of an electromagnetic prismatic joint with variable stiffness[J]. Industrial Robot, 2017, 44(2): 222-230. doi: 10.1108/IR-09-2016-0249
    [11] EBRAHIMI B, KHAMESEE M B, GOLNARAGHI M F. Design and modeling of a magnetic shock absorber based on eddy current damping effect[J]. Journal of Sound and Vibration, 2008, 315(4/5): 875-889.
    [12] 曹琪,王皓,余觉. 基于电磁变刚度的力控制装置研究[J]. 机械设计与研究,2020,36(3): 170-175,181. doi: 10.13952/j.cnki.jofmdr.2020.0124

    CAO Qi, WANG Hao, YU Jue. Research on the force control device based on electromagnetic variable stiffness principle[J]. Machine Design & Research, 2020, 36(3): 170-175,181. doi: 10.13952/j.cnki.jofmdr.2020.0124
    [13] 孟凯,顾勇,刘豫喜,等. 基于可控电磁负刚度的半主动隔振器传递率特性研究[J]. 振动与冲击,2022,41(7): 228-234. doi: 10.13465/j.cnki.jvs.2022.07.030

    MENG Kai, GU Yong, LIU Yuxi, et al. Transmissibility characteristics of semi-active vibration isolator based on controllable electro-magnetic negative stiffness[J]. Journal of Vibration and Shock, 2022, 41(7): 228-234. doi: 10.13465/j.cnki.jvs.2022.07.030
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  228
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-03-17
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回