• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑能耗的电磁主动悬架LQR控制策略

孙凤 邢大壮 周冉 金俊杰 徐方超

孙凤, 邢大壮, 周冉, 金俊杰, 徐方超. 考虑能耗的电磁主动悬架LQR控制策略[J]. 西南交通大学学报, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815
引用本文: 孙凤, 邢大壮, 周冉, 金俊杰, 徐方超. 考虑能耗的电磁主动悬架LQR控制策略[J]. 西南交通大学学报, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815
SUN Feng, XING Dazhuang, ZHOU Ran, JIN Junjie, XU Fangchao. LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815
Citation: SUN Feng, XING Dazhuang, ZHOU Ran, JIN Junjie, XU Fangchao. LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815

考虑能耗的电磁主动悬架LQR控制策略

doi: 10.3969/j.issn.0258-2724.20220815
基金项目: 国家自然科学基金(52005345, 52005344);国家重点研发计划(2020YFC2006701);辽宁省教育厅项目(LFGD2020002); 辽宁省”揭榜挂帅”科技重大专项(2022JH1/10400027)
详细信息
    作者简介:

    孙凤(1978—),男,教授,博士,研究方向为机械系统多元驱动及其控制技术,E-mail:sunfeng@sut.edu.cn

  • 中图分类号: TH122;U463.33

LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption

  • 摘要:

    为改善车辆电磁主动悬架功率过大的问题,提出一种考虑能耗的改进线性二次型调节器(linear quadratic regulator,LQR)控制策略. 首先,介绍电磁主动悬架的结构,由等效磁路法得出直线电机的推力模型,再建立电磁主动悬架的动力学模型;其次,在传统的LQR加权系数优化模型基础上提出增加有关能耗的约束条件,设计了一种改进LQR控制策略;最后,使用MATLAB/Simulink进行仿真,通过主动力大小进行控制器正确性的验证,并对比分析随机路面下的能耗与动力学效果. 结果表明:改进LQR控制策略的主动力大小符合优化时约束的概率最低为99.89%;改进LQR控制策略与原LQR控制策略相比,功率均方根降低80.29%,悬架动行程均方根没有明显差别,轮胎动变形均方根优于原LQR控制策略约5%,车身垂向加速度降幅最低仍能达到原LQR控制策略的50%.

     

  • 图 1  新型电磁悬架结构

    Figure 1.  Structure of new electromagnetic suspension

    图 2  直线电机结构

    Figure 2.  Structure of linear motor

    图 3  直线电机示意

    Figure 3.  Parameters of linear motor

    图 4  1/4车电磁主动悬架模型

    Figure 4.  Quarter electromagnetic active suspension model

    图 5  时速60 km/h路面高程

    Figure 5.  Road elevation at speed of 60 km/h

    图 6  改进LQR控制策略仿真主动力

    Figure 6.  Simulated active force of modified LQR control strategy

    图 7  仿真3~8 s悬架动力学性能

    Figure 7.  Suspension dynamic performance in 3–8 s during simulation

    表  1  1/4悬架参数

    Table  1.   Parameters of quarter suspension

    参数数值
    mb/kg459
    mw/kg50
    ks/(N·m−157000
    cs/(N·s·m−11800
    kt/(N·m−1230000
    kf/(N·A−140
    r25.3
    下载: 导出CSV

    表  2  性能指标均方根

    Table  2.   RMS of performance indexes

    策略 车身垂向加
    速度/(m·s−2
    悬架动行
    程/mm
    轮胎动变
    形/mm
    被动 2.2197 14.7514 5.8153
    原 LQR
    控制策略
    1.3202 12.0841 5.6834
    改进 LQR
    控制策略
    1.7254 12.1087 5.3656
    下载: 导出CSV

    表  3  性能指标均方根降幅

    Table  3.   Reduction of RMS of performance indexes %

    策略车身垂向
    加速度
    悬架动
    行程
    轮胎动
    变形
    原 LQR控制策略40.5218.082.27
    改进 LQR控制策略22.2717.917.73
    下载: 导出CSV
  • [1] WEI W, ZHANG X Y, SUN F. An electromagnetic actuator for vibration control and energy recycle[J]. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2018(2018): 2P1-E13.
    [2] 杨超,李以农,郑玲,等. 基于多目标粒子群算法的电磁主动悬架作动器优化[J]. 机械工程学报,2019,55(19): 154-166. doi: 10.3901/JME.2019.19.154

    YANG Chao, LI Yinong, ZHENG Ling, et al. Optimum of electromagnetic active suspension actuator using multi-objective particle swarm optimization algorithm[J]. Journal of Mechanical Engineering, 2019, 55(19): 154-166. doi: 10.3901/JME.2019.19.154
    [3] MIN X, LI Y M, TONG S C. Adaptive fuzzy output feedback inverse optimal control for vehicle active suspension systems[J]. Neurocomputing, 2020, 403: 257-267. doi: 10.1016/j.neucom.2020.04.096
    [4] 孙凤,李华辰,单光坤,等. 磁力馈能悬架的设计与实验研究[J]. 机械科学与技术,2023,42(3): 402-407. doi: 10.13433/j.cnki.1003-8728.20200579

    SUN Feng, LI Huachen, SHAN Guangkun, et al. Design and experimental study of magnetic energy-harvesting suspension[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 402-407. doi: 10.13433/j.cnki.1003-8728.20200579
    [5] GU C, YIN J, LUO J, et al. Performance-oriented controls of a novel rocker-pushrod electromagnetic active vehicle suspension[J]. Mechanical Systems and Signal Processing, 2018, 109: 1-14. doi: 10.1016/j.ymssp.2018.02.019
    [6] LIU J, LI X J, ZHANG X L, et al. Modeling and simulation of energy-regenerative active suspension based on BP neural network PID control[J]. Shock and Vibration, 2019, 2019: 4609754.1-4609754.8.
    [7] KOU F R, JING Q Q, CHEN C, et al. Endocrine composite skyhook-groundhook control of electromagnetic linear hybrid active suspension[J]. Shock and Vibration, 2020, 2020: 3402168.1-3402168.17.
    [8] SATYANARAYANA V S V, RAO N M, SATEESH B. Parameters optimisation of vehicle suspension system for better ride comfort[J]. International Journal of Vehicle Performance, 2018, 4(2): 186-199. doi: 10.1504/IJVP.2018.090956
    [9] DING R K, WANG R C, MENG X P, et al. Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension[J]. Mechanical Systems and Signal Processing, 2019, 134: 106301.1-106301.20.
    [10] SHAHID Y, WEI M X. Comparative analysis of different model-based controllers using active vehicle suspension system[J]. Algorithms, 2019, 13(1): 13010010.1-13010010.15.
    [11] MANNA S, MAZUMDAR R. Comparative performance analysis of LQR and MPC for active suspension system[C]//2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA). Greater Noida: IEEE, 2020: 352-356.
    [12] MONTAZERI-GH M, KAVIANIPOUR O. Investigation of the active electromagnetic suspension system considering hybrid control strategy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(10): 1658-1669. doi: 10.1177/0954406213511430
    [13] ATAEI M, ASADI E, GOODARZI A, et al. Multi-objective optimization of a hybrid electromagnetic suspension system for ride comfort, road holding and regenerated power[J]. Journal of Vibration and Control, 2017, 23(5): 782-793. doi: 10.1177/1077546315585219
    [14] YAMIN A H M, DARUS I Z M, NOR N S M, et al. Intelligent cuckoo search algorithm of PID and skyhook controller for semi-active suspension system using magneto-rheological damper[J]. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17(4): 402-415. doi: 10.11113/mjfas.v17n4.2067
    [15] 史文库,张曙光,陈志勇,等. 磁流变半主动座椅悬架建模及振动特性分析[J]. 西南交通大学学报,2023,58(2): 253-260.

    SHI Wenku, ZHANG Shuguang, CHEN Zhiyong, et al. Modeling and vibration analysis of semi-active seat suspension with magnetorheological damper[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 253-260.
    [16] 韦伟. 电磁主动悬架设计与控制策略研究[D]. 沈阳: 沈阳工业大学, 2020.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械振动道路路面谱测量数据报告: GB/T 7031—2005[S]. 北京: 中国标准出版社, 2006.
    [18] 陈杰平,陈无畏,祝辉,等. 基于Matlab/Simulink的随机路面建模与不平度仿真[J]. 农业机械学报,2010,41(3): 11-15.

    CHEN Jieping, CHEN Wuwei, ZHU Hui, et al. Modeling and simulation on stochastic road surface irregularity based on Matlab/simulink[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(3): 11-15.
    [19] 孟杰,张凯,焦洪宇. 基于遗传算法优化的汽车主动悬架LQG控制器的设计[J]. 机械科学与技术,2013,32(6): 914-918. doi: 10.13433/j.cnki.1003-8728.2013.06.030

    MENG Jie, ZHANG Kai, JIAO Hongyu. Optimal control design of the vehicle active suspension based on the genetic algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(6): 914-918. doi: 10.13433/j.cnki.1003-8728.2013.06.030
    [20] 庄表中, 王行新. 随机振动概论[M]. 北京: 地震出版社, 1982.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  198
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-03-19
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2023-03-29

目录

    /

    返回文章
    返回