• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于车轨耦合的地铁车轮多边形形成机理

施以旋 戴焕云 毛庆洲 石怀龙 汪群生

施以旋, 戴焕云, 毛庆洲, 石怀龙, 汪群生. 基于车轨耦合的地铁车轮多边形形成机理[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220785
引用本文: 施以旋, 戴焕云, 毛庆洲, 石怀龙, 汪群生. 基于车轨耦合的地铁车轮多边形形成机理[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220785
SHI Yixuan, DAI Huanyun, MAO Qingzhou, SHI Huailong, WANG Qunsheng. Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220785
Citation: SHI Yixuan, DAI Huanyun, MAO Qingzhou, SHI Huailong, WANG Qunsheng. Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220785

基于车轨耦合的地铁车轮多边形形成机理

doi: 10.3969/j.issn.0258-2724.20220785
基金项目: 国家自然科学基金项目(51975485,52272406,52102441);中国博士后科学基金(2023TQ0253)
详细信息
    作者简介:

    施以旋(1990—),男,博士研究生,研究方向为车辆系统动力学,E-mail:shiyixuan@my.swjtu.edu.cn

    通讯作者:

    戴焕云(1966—),男,研究员,研究方向为车辆系统动力学,E-mail:daihuanyun@163.com

  • 中图分类号: U270.1

Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling

  • 摘要:

    车轮多边形磨耗会恶化轨道车辆振动环境,导致结构部件的共振疲劳失效,严重威胁行车安全. 为研究地铁车辆车轮多边形磨耗的形成机理,开展线路动态跟踪试验研究,建立车轨垂向耦合有限元模型和动力学模型,并进行轮轨长期磨耗迭代仿真分析. 研究结果表明:实测车辆发生了明显的7~9阶的车轮多边形磨耗,导致车辆出现50~70 Hz的强迫振动,频率与轮轨系统耦合振动P2力频率接近;通过车轮磨耗迭代仿真分析,确定了钢轨周期性接头焊缝不平顺引起的轮轨系统P2力共振是导致车轮7~9阶多边形磨耗的根本原因;对钢弹簧浮置板道床和梯形轨枕道床而言,长期轮轨P2力作用会分别引起8阶和15阶车轮多边形磨耗.

     

  • 图 1  地铁车辆车轮踏面

    Figure 1.  Wheel tread of metro vehicle

    图 2  车轮粗糙度测试结果

    Figure 2.  Test results of wheel roughness

    图 3  车轮粗糙度对比

    Figure 3.  Comparison of wheel roughness

    图 4  转向架动力学试验测点[7]

    Figure 4.  Dynamics test measuring point on bogie[7]

    图 5  轴箱加速度分析

    Figure 5.  Acceleration analysis of axlebox

    图 6  加速度幅频特性分析

    Figure 6.  Amplitude-frequency analysis of acceleration

    图 7  车辆-轨道垂向耦合模型

    Figure 7.  Vehicle-track vertical coupling model

    图 8  单轮轨耦合轮轨频响特性

    Figure 8.  Frequency response characteristics of single wheel-track coupling

    图 9  多轮轨接触相互作用(整车)

    Figure 9.  Multi wheel-track contact interaction (vehicle)

    图 10  车辆-轨道耦合有限元模型

    Figure 10.  Vehicle-track coupling finite element model

    图 11  车辆-轨道刚柔耦合动力学模型

    Figure 11.  Vehicle-track rigid-flexible coupling dynamics model

    图 12  车轮多边形磨耗预测模型

    Figure 12.  Prediction model of wheel polygonal wear

    图 13  钢轨焊缝不平顺

    Figure 13.  Irregularity of rail weld

    图 14  轮轨耦合作用分析模型

    Figure 14.  Analysis model of wheel-track coupling

    图 15  轮轨耦合状态下轮轨法向力频响特性

    Figure 15.  Frequency response characteristics of wheel-track normal force under wheel-track coupling

    图 16  轮轨法向力和横向蠕滑力

    Figure 16.  wheel-track normal force and lateral creep force

    图 17  车轨耦合作用下轨道模态的参数分析

    Figure 17.  Parameter analysis of track modal under the action of vehicle-track coupling

    图 18  车轮不平顺磨耗演变过程

    Figure 18.  Evolution of wheel irregular wear

    表  1  地铁车辆和轨道的主要参数

    Table  1.   Main parameters of metro vehicles and tracks

    参数符号数值
    定距之半/mlc7.85
    轴距之半/mlw1.25
    车体质量/kgMc24937
    构架质量/kgMf1830
    轮对质量/kgMw1231
    一系悬挂垂向刚度/(MN·m−1Kps1.5
    一系悬挂垂向阻尼/(kN·s·m−1Cps2
    浮置板道床扣件垂向刚度/(MN·m−1Ka50
    浮置板支撑刚度/(kN·s·m−1Ca20
    梯形轨枕扣件垂向刚度(MN·m−1Kb60
    梯形轨枕纵梁支撑刚度/(kN·s·m−1Cb20
    普通道床扣件垂向刚度/(MN·m−1Kc20
    浮置板长度/mLa24
    梯形轨枕纵梁长度/mLb6
    下载: 导出CSV
  • [1] 刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6): 547-559. doi: 10.1360/N092015-00334

    LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. SCIENTIA SINICA Technologica, 2016, 46(6): 547-559. doi: 10.1360/N092015-00334
    [2] 魏鹏勃. 城市轨道交通引起的环境振动预测与评估[D]. 北京: 北京交通大学, 2009.
    [3] KANG X, CHEN G X, ZHU Q, et al. Study on wheel polygonal wear of metro trains caused by frictional self-excited oscillation[J]. Tribology Transactions, 2021, 64(6): 1108-1117. doi: 10.1080/10402004.2021.1970868
    [4] ZHOU C, CHI M R, WEN Z F, et al. An investigation of abnormal vibration-induced coil spring failure in metro vehicles[J]. Engineering Failure Analysis, 2020, 108: 104238.1-104238.13. doi: 10.1016/j.engfailanal.2019.104238
    [5] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649
    [6] TAO G Q, WEN Z F, LIANG X R, et al. An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures[J]. Vehicle System Dynamics, 2019, 57(1): 1-16. doi: 10.1080/00423114.2018.1445269
    [7] SHI Y X, DAI H Y, WANG Q S, et al. Research on low-frequency swaying mechanism of metro vehicles based on wheel-rail relationship[J]. Shock and Vibration, 2020, 2020: 8878020.1-8878020.15.
    [8] CAI W B, CHI M R, WU X W, et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear, 2019, 440/441: 203079.1-203079.12. doi: 10.1016/j.wear.2019.203079
    [9] MA C Z, GAO L, CUI R X, et al. The initiation mechanism and distribution rule of wheel high-order polygonal wear on high-speed railway[J]. Engineering Failure Analysis, 2021, 119: 104937.1-104937.14.
    [10] YANG X X, TAO G Q, LI W, et al. On the formation mechanism of high-order polygonal wear of metro train wheels: experiment and simulation[J]. Engineering Failure Analysis, 2021, 127: 105512.1-105512.14.
    [11] QU S, ZHU B, ZENG J, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2021, 59(10): 1573-1586. doi: 10.1080/00423114.2020.1772984
    [12] 董雅宏,曹树谦. 车轮高阶多边形磨耗发生与演化特征分析[J]. 西南交通大学学报,2023,58(3): 665-676.

    DONG Yahong, CAO Shuqian. Analysis of occurrence and evolution characteristics of wheel high-order polygonal wear[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 665-676.
    [13] 胡晓依,任海星,成棣,等. 动车组车轮多边形磨耗形成与发展过程仿真研究[J]. 中国铁道科学,2021,42(2): 107-115.

    HU Xiaoyi, REN Haixing, CHENG Di, et al. Numerical simulation on the formation and development of polygonal wear of EMU wheels[J]. China Railway Science, 2021, 42(2): 107-115.
    [14] The International Organization for Standardization. Railway applications–acoustics measurement of noise emitted by railbound vehicles: ISO 3095:2013[S]. Switzerland: ISO Copyright Office, 2013.
    [15] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.
    [16] ZHAI W M, WANG K Y, CAI C B. Fundamentals of vehicle−track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11): 1349-1376. doi: 10.1080/00423110802621561
    [17] KORO K, ABE K, ISHIDA M, et al. Timoshenko beam finite element for vehicle—track vibration analysis and its application to jointed railway track[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 159-172. doi: 10.1243/0954409041319687
    [18] 林国进. 轮对弹性及参数对轮轨接触关系影响研究[D]. 北京: 北京交通大学, 2015.
    [19] WU T X, THOMPSON D J. Behaviour of the normal contact force under multiple wheel/rail interaction[J]. Vehicle System Dynamics, 2002, 37(3): 157-174. doi: 10.1076/vesd.37.3.157.3533
    [20] 关庆华,周业明,李伟,等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报,2019,55(8): 118-127. doi: 10.3901/JME.2019.08.118

    GUAN Qinghua, ZHOU Yeming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127. doi: 10.3901/JME.2019.08.118
    [21] 陈小平,王平,陈嵘. 弹性支承块式无砟轨道的减振机理[J]. 铁道学报,2007,29(5): 69-72. doi: 10.3321/j.issn:1001-8360.2007.05.013

    CHEN Xiaoping, WANG Ping, CHEN Rong. Damping vibration mechanism of the elastic bearing block track[J]. Journal of the China Railway Society, 2007, 29(5): 69-72. doi: 10.3321/j.issn:1001-8360.2007.05.013
    [22] 赵晓男,陈光雄,康熙,等. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报,2020,55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027

    ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on lanzhou-Xinjiang passenger dedicated line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
    [23] QI Y Y, DAI H Y, GAN F, et al. Optimization of rail profile design for high-speed lines based on Gaussian function correction method[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023: 095440972311525.1-095440972311525.13.
    [24] 王鹏,陶功权,杨晓璇,等. 中国高速列车车轮多边形磨耗特征分析[J]. 西南交通大学学报,2023,58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777

    WANG Peng, TAO Gongquan, YANG Xiaoxuan, et al. Analysis of polygonal wear characteristics of Chinese high-speed train wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  135
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-03-14
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回