• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于非线性材料的高速磁浮电磁铁建模与分析

付善强 吴冬华 韩伟涛 周颖

付善强, 吴冬华, 韩伟涛, 周颖. 基于非线性材料的高速磁浮电磁铁建模与分析[J]. 西南交通大学学报, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741
引用本文: 付善强, 吴冬华, 韩伟涛, 周颖. 基于非线性材料的高速磁浮电磁铁建模与分析[J]. 西南交通大学学报, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741
FU Shanqiang, WU Donghua, HAN Weitao, ZHOU Ying. Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741
Citation: FU Shanqiang, WU Donghua, HAN Weitao, ZHOU Ying. Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741

基于非线性材料的高速磁浮电磁铁建模与分析

doi: 10.3969/j.issn.0258-2724.20220741
基金项目: 山东省重点研发计划(重大科技创新工程)(2020CXGC010202)
详细信息
    作者简介:

    付善强(1981—),男,高级工程师,研究方向为高速列车、高速磁浮技术研发,E-mail:sf-fushanqiang@cqsf.com

    通讯作者:

    韩伟涛(1989—),男,高级工程师,研究方向为高速磁浮技术,E-mail:hanweitaotao@163.com

  • 中图分类号: TH212;TH213.3

Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials

  • 摘要:

    为更加精确、快速地分析高速磁浮悬浮电磁铁的电磁力特性,实现与控制、动力学模型的良好匹配,提出一种基于非线性材料的高速磁浮悬浮电磁铁电磁力建模方法. 首先,在搭建电磁铁等效磁路(equivalent magnetic circuit, EMC)模型时,考虑了导磁材料自身的非线性,导磁材料的磁阻计算以内部磁通为基础,推导以电压及间隙为输入,电流及电磁力为输出的电磁铁解析模型,计算电磁力-间隙-电流特性,并与传统EMC模型进行对比分析;其次,搭建电磁铁有限元(finite element method, FEM)模型,对非线性EMC模型的结果进行验证;最后,采用地面试验台对悬浮电磁铁进行电磁力测试,验证EMC及FEM模型的准确性. 研究结果表明:与传统电磁力模型相比,本文EMC模型计算的电磁力在大电流区间会出现饱和现象,更接近实际情况,适用范围更广;磁间隙12.5 mm,电流50 A工况下,EMC与FME计算的电磁力偏差仅为4.5%,且与试验结果具有非常高的一致性;高精度的非线性电磁力模型为悬浮系统动态特性联合分析及参数优化奠定了基础.

     

  • 图 1  悬浮电磁铁及长定子模型

    Figure 1.  Model of maglev electromagnet and long stator

    图 2  半悬浮电磁铁等效磁路

    Figure 2.  EMC of half-maglev magnet

    图 3  气隙磁场分布

    Figure 3.  Magnetic field distribution of air gap

    图 4  铁芯的分段

    Figure 4.  Iron core sections

    图 5  铁芯B-H曲线- M530-50A

    Figure 5.  B-H curve of iron core-M530-50A

    图 6  悬浮电磁铁控制回路

    Figure 6.  Control loop of maglev electromagnet

    图 7  电磁力模型框图

    Figure 7.  Magnetic force model

    图 8  线性与非线性材料EMC电磁力

    Figure 8.  Electromagnetic forces of EMC models with linear and nonlinear materials

    图 9  悬浮电磁铁及长定子有限元模型

    Figure 9.  FEM model of maglev electromagnet and long stator

    图 10  EMC与FEM电磁力结果

    Figure 10.  Electromagnetic force results of EMC and FEM

    图 11  悬浮电磁铁静态电磁力测试

    Figure 11.  Static electromagnetic force test of maglev electromagnet

    图 12  电磁力计算及测试结果

    Figure 12.  Electromagnetic force calculation and test results

    表  1  悬浮电磁铁及长定子参数

    Table  1.   Parameters of maglev electromagnet and long stator

    项点取值项点取值
    定子极距/mm258.0铁芯厚度/mm170.0
    电磁铁极距/mm266.5磁极匝数300
    定子齿宽度/mm43.0额定磁间隙/mm12.5
    定子槽宽度/mm43.0恒定相对磁导率7 000
    下载: 导出CSV
  • [1] LIU Q, LI H, WANG W, et al. Analysis and experiment of 5-DOF decoupled spherical vernier-gimballing magnetically suspended flywheel (VGMSFW)[J]. IEEE Access, 2020, 8: 111707-111717. doi: 10.1109/ACCESS.2020.3001144
    [2] 韩邦成,彭松,贺赞,等. 磁悬浮控制力矩陀螺高速电机绕组涡流损耗计算及热分析[J]. 光学精密工程,2020,28(1): 130-140. doi: 10.3788/OPE.20202801.0130

    HAN Bangcheng, PENG Song, HE Zan, et al. Eddy current loss calculation and thermal analysis of high-speed motor winding in magnetically suspended control moment gyroscope[J]. Optics and Precision Engineering, 2020, 28(1): 130-140. doi: 10.3788/OPE.20202801.0130
    [3] ZHAI L X, SUN J J, MA X, et al. Thermal-structure coupling analysis and multi-objective optimization of motor rotor in MSPMSM[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1733-1747. doi: 10.1016/j.cja.2018.09.008
    [4] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [5] 熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [6] 马光同,杨文姣,王志涛,等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版),2019,47(7): 68-74,82.

    MA Guangtong, YANG Wenjiao, WANG Zhitao, et al. Research development of superconducting maglev transportation[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 68-74,82.
    [7] 翟明达,龙志强,李晓龙,等. 考虑涡流效应的端部悬浮系统建模与控制器优化设计[J]. 同济大学学报(自然科学版),2021,49(12): 1652-1659. doi: 10.11908/j.issn.0253-374x.21207

    ZHAI Mingda, LONG Zhiqiang, LI Xiaolong, et al. Modeling of front magnetic levitation system and optimization design of controller considering eddy current effect[J]. Journal of Tongji University (Natural Science), 2021, 49(12): 1652-1659. doi: 10.11908/j.issn.0253-374x.21207
    [8] WANG Z Q, HUANG C C, LI X L, et al. Levitation control of PEMS high speed maglev train considering the coupling effects within a joint structure[C]//2018 Chinese Control and Decision Conference (CCDC). Shenyang: IEEE, 2018: 1138-1143.
    [9] 张宝安,虞大联,李海涛,等. 高速磁浮悬浮架柔性特征对曲线通过性能的影响[J]. 西南交通大学学报,2022,57(3): 475-482.

    ZHANG Baoan, YU Dalian, LI Haitao, et al. Influence of flexibility characteristics of levitation chassis on curve negotiationperformance of high-speed maglev vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482.
    [10] HAN W T, SUN J J, LIU X K, et al. A novel hybrid suspension electromagnet for middle-low speed maglev train[J]. Journal of Magnetics, 2017, 22(3): 463-471. doi: 10.4283/JMAG.2017.22.3.463
    [11] 禹春敏,邓智泉,梅磊,等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报,2021,36(6): 1219-1228. doi: 10.19595/j.cnki.1000-6753.tces.200029

    YU Chunmin, DENG Zhiquan, MEI Lei, et al. Re- search on a new hybrid axial-radial magnetic bearing based on precise magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228. doi: 10.19595/j.cnki.1000-6753.tces.200029
    [12] SUN J J, JU Z Y, HAN W T, et al. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG[J]. Journal of Magnetism and Magnetic Materials, 2017, 421: 86-97. doi: 10.1016/j.jmmm.2016.07.070
    [13] DING S S, SUN J J, HAN W T, et al. Modeling and analysis of a novel guidance magnet for high-speed maglev train[J]. IEEE Access, 2019, 7: 133324-133334. doi: 10.1109/ACCESS.2019.2940728
    [14] POLINDER H, SLOOTWEG J G, HOEIJMAKERS M J, et al. Modelling of a linear PM machine including magnetic saturation and end effects: maximum force to current ratio[C]//IEEE International Electric Machines and Drives Conference, 2003. Madison: IEEE, 2003: 805-811.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  89
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-03-20
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-03-29

目录

    /

    返回文章
    返回