• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

砂土中能源桩承载力受热冷循环影响的离心机试验

陈龙 胡逸凡 陈永辉 朱蕾 张体浪

陈龙, 胡逸凡, 陈永辉, 朱蕾, 张体浪. 砂土中能源桩承载力受热冷循环影响的离心机试验[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220740
引用本文: 陈龙, 胡逸凡, 陈永辉, 朱蕾, 张体浪. 砂土中能源桩承载力受热冷循环影响的离心机试验[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220740
CHEN Long, HU Yifan, CHEN Yonghui, ZHU Lei, ZHANG Tilang. Centrifuge Test on Bearing Capacity of Energy Piles in Sand Affected by Thermal-Cool Cycles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220740
Citation: CHEN Long, HU Yifan, CHEN Yonghui, ZHU Lei, ZHANG Tilang. Centrifuge Test on Bearing Capacity of Energy Piles in Sand Affected by Thermal-Cool Cycles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220740

砂土中能源桩承载力受热冷循环影响的离心机试验

doi: 10.3969/j.issn.0258-2724.20220740
基金项目: 国家自然科学基金项目(51708175):中央高校基本科研业务费(B210202032)
详细信息
    作者简介:

    陈龙(1987—),男,教授,研究方向为软土地基处理,E-mail:longchenhhu@163.com

  • 中图分类号: TU83

Centrifuge Test on Bearing Capacity of Energy Piles in Sand Affected by Thermal-Cool Cycles

  • 摘要:

    为研究砂土中能源桩在热冷循环温度作用下的承载能力,开展不同密实度奉浦砂土中细长能源桩的离心机模型试验. 试验中进行20次热-冷温度循环作用,获得能源桩轴力、侧摩阻力、单桩承载力等的变化规律,并进行对比研究. 试验结果表明:随着温度循环次数增加,能源桩桩身轴力均逐渐衰减并趋于稳定,且中密砂中能源桩最大轴力衰减值远高于密砂中能源桩;在热冷温度循环过程中,中密砂中能源桩桩身中下部存在中性点,在冷循环过程中中性点以上存在正的附加侧摩阻力,下部存在负的附加侧摩阻力,而在热循环过程中中性点以上存在负的附加侧摩阻力,下部存在正的附加侧摩阻力;密砂对能源桩下部存在明显的约束作用,使其在冷循环过程中全桩身相对桩周土体存在向下的位移趋势,产生全桩身正的附加侧摩阻力,而热循环过程中产生负的附加侧摩阻力;长期循环荷载作用使得能源桩的桩基承载力发生折减,与相应原型桩相比,埋设于中密砂和密砂中的能源桩承载力分别减小了7.3%和15.6%;密砂中的原型桩及能源桩承载力均高于中密砂中原型桩约11%;当实际工程中能源桩处于不同密实度的砂土层中时,需采取合理的措施,以满足能源桩的承载要求.

     

  • 图 1  土工离心机

    Figure 1.  Geotechnical centrifuge

    图 2  能源桩桩身仪器及横截面布置

    Figure 2.  Energy pile instruments and cross section layout

    图 3  仪器布设

    Figure 3.  Layout of instruments

    图 4  热冷循环设备布置

    Figure 4.  Layout of equipment for thermal-cool cycles

    图 5  能源桩EP2桩身轴力随时间变化

    Figure 5.  Variation of axial force of energy pile EP2 with time

    图 6  不同循环次数下能源桩桩身轴力衰减曲线

    Figure 6.  Axial force attenuation curves of energy pile under different temperature cycles

    图 7  末次热循环过程不同温度下桩身轴力

    Figure 7.  Axial force of energy pile at different temperatures during last thermal cycle

    图 8  末次热循环过程中不同温度下桩身附加轴力

    Figure 8.  Additional axial force of energy pile at different temperatures during last thermal cycle

    图 9  末次冷循环过程中不同温度下桩身轴力

    Figure 9.  Axial force of energy pile at different temperatures during last cool cycle

    图 10  末次冷循环过程中不同温度下桩身附加轴力

    Figure 10.  Additional axial force of energy pile at different temperatures during last cool cycle

    图 11  循环温度荷载作用下桩侧摩阻力变化

    Figure 11.  Side friction variation of energy pile with temperature cycle

    图 12  末次热循环过程中不同温度下桩身附加侧摩阻力

    Figure 12.  Additional side friction of energy pile at different temperatures during last thermal cycle

    图 13  末次冷循环过程中不同温度下桩身附加侧摩阻力

    Figure 13.  Additional side friction of energy pile at different temperatures during last cool cycle

    图 14  模型桩单桩Q-S试验曲线

    Figure 14.  Q-S curves of model pile

    表  1  离心机模型试验比例尺[22]

    Table  1.   Scale of centrifuge model test [22]

    试验参数 相似比尺(模型/原型)
    加速度/(m·s−2 N
    长度/m 1/N
    应力/kPa 1
    应变 1
    温度/℃ 1
    密度/(kg·m−3 1
    颗粒 1
    蠕变 1
    轴力N 1/N2
    弯矩/ (N·m) 1/N3
    轴向刚度/N 1/N2
    时间/s 1/N2
    下载: 导出CSV
  • [1] 鲍旭明. 地源热泵国内外发展状况对比[J]. 山西建筑,2016,42(20): 126-128. doi: 10.3969/j.issn.1009-6825.2016.20.070

    BAO Xuming. The development comparison of ground source heat pump at home and abroad[J]. Shanxi Architecture, 2016, 42(20): 126-128. doi: 10.3969/j.issn.1009-6825.2016.20.070
    [2] BRANDL H. Energy piles and diaphragm walls for heat transfer form and into the ground[C]//Procssding of the 3-h international Geotechnical Seminar on Deep Foundations on Bored and Auger Piles. Vienna: CRC Pr. 1998: 38-60.
    [3] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781.
    [4] LALOUI L. In situ testing of a heat exchanger pile[M]//Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas: ASCE, 2011: 410-419.
    [5] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248.
    [6] FAIZAL M, BOUAZZA A, HABERFIELD C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 4018072.1-4018072.14.
    [7] KALANTIDOU A, TANG A M, PEREIRA J M, et al. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model[J]. Géotechnique, 2012, 62(11): 1047-1051.
    [8] YAZDANI S, HELWANY S, OLGUN G. Investigation of thermal loading effects on shaft resistance of energy pile using laboratory-scale model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019043.1-04019043.12.
    [9] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay[J]. Géotechnique Letters, 2014, 4(4): 310-316.
    [10] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand[J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. doi: 10.1139/cgj-2014-0301
    [11] GOODE J C I. Centrifuge Modeling of the Thermo-Mechanical Response of Energy Foundations[D]. Boulder: University of Colorado at Boulder. 2013.
    [12] 路宏伟,蒋刚,王昊,等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报,2017,39(2): 334-342 doi: 10.11779/CJGE201702018

    LU Hongwei, JIANG Gang, WANG Hao. et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering., 2017, 39(2): 334-342. doi: 10.11779/CJGE201702018
    [13] FANG J C, KONG G Q, YANG Q. Group performance of energy piles under cyclic and variable thermal loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(8): 04022060.1-04022060.10
    [14] LEI G H, NG C W W, RIGBY D B. Stress and displacement around an elastic artificial rectangular hole[J]. Journal of Engineering Mechanics, 2001, 127(9): 880-890. doi: 10.1061/(ASCE)0733-9399(2001)127:9(880)
    [15] CHIU C F, NG C W W. A state-dependent elasto-plastic model for saturated and unsaturated soils[J]. Géotechnique, 2003, 53(9): 809-829.
    [16] WU D, LIU H L, KONG G Q, et al. Displacement response of an energy pile in saturated clay[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2018, 171(4): 285-294. doi: 10.1680/jgeen.17.00152
    [17] 郭易木,钟鑫,刘松玉,等. 自由约束条件下分层地基中PHC能源桩热力响应原型试验研究[J]. 岩石力学与工程学报,2019,38(3): 582-590.

    GUO Yimu, ZHONG Xin, LIU Songyu, et al. Prototype experimental investigation on the thermo-mechanical behaviors of free constrained full-scale PHC energy piles in multi-layer strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 582-590.
    [18] GHAAOWD I, MCCARTNEY J S. Centrifuge modeling methodology for energy pile pullout from saturated soft clay[J]. Geotechnical Testing Journal., 2022, 45(2): 332-354 . doi: 10.1520/GTJ20210062
    [19] NG C W W, FARIVAR A, GOMAA S M M H, et al. Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading[J]. Renewable Energy, 2021, 172: 998-1012. doi: 10.1016/j.renene.2021.03.108
    [20] ZHAO R, LEUNG A K, VITALI D, et al. Small-scale modeling of thermomechanical behavior of reinforced concrete energy piles in soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(4): 04020011.1-04020011.10.
    [21] 李伟伟,钱建固,黄茂松,等. 等截面抗拔桩承载变形特性离心模型试验及数值模拟[J]. 岩土工程学报,2010,32(增2): 17-20.

    LI Weiwei, QIAN Jiangu, HUANG Maosong, et al. Centrifugal model tests and numerical simulation on bearing capacity and deformation of uplift piles with uniform sections[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 17-20.
    [22] TAYLOR R N. Geotechnical centrifuge technology[M]. London: Blackie Academic & Professional, 1995: 27-42.
    [23] 蒋刚,李仁飞,王昊,等. 摩擦型能源桩热–力耦合全过程承载性能分析[J]. 岩石力学与工程学报,2019,38(12): 2525-2534.

    JIANG Gang, LI Renfei, WANG Hao, et al. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525-2534.
    [24] 常虹,朱万里,王琰,等. 温度荷载作用下能源桩的力学特性[J]. 中国科技论文,2022,17(6): 660-666. doi: 10.3969/j.issn.2095-2783.2022.06.011

    CHANG Hong, ZHU Wanli, WANG Yan, et al. Mechanical properties of energy pile under temperature load[J]. China Sciencepaper, 2022, 17(6): 660-666. doi: 10.3969/j.issn.2095-2783.2022.06.011
    [25] 中华人民共和国住房和城乡建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008.
    [26] 汤炀,刘干斌,郑明飞,等. 饱和粉土中相变能源桩力响应模型试验研究[J]. 岩土力学,2022,43(增2): 282-290.

    TANG Yang, LIU Ganbin, ZHENG Mingfei, et al. Model test on thermal response of phase change pile in saturated silt ground[J]. Rock and Soil Mechanics, 2022, 43(S2): 282-290.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  34
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-04-19
  • 网络出版日期:  2024-07-06

目录

    /

    返回文章
    返回