• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

重载铁路树形贯通式同相供电系统的运行状态

康德建 易东 王辉

康德建, 易东, 王辉. 重载铁路树形贯通式同相供电系统的运行状态[J]. 西南交通大学学报, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723
引用本文: 康德建, 易东, 王辉. 重载铁路树形贯通式同相供电系统的运行状态[J]. 西南交通大学学报, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723
KANG Dejian, YI Dong, WANG Hui. Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723
Citation: KANG Dejian, YI Dong, WANG Hui. Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723

重载铁路树形贯通式同相供电系统的运行状态

doi: 10.3969/j.issn.0258-2724.20220723
基金项目: 国家能源投资集团有限责任公司重大科技项目(F1GD20200002)
详细信息
    作者简介:

    康德建(1971—),男,高级工程师,研究方向为牵引供电系统运行与分析,E-mail:10573678@ceic.com

  • 中图分类号: TM922.3

Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways

  • 摘要:

    重载铁路树形贯通式同相供电系统能够最大限度降低线路中电分相带来的安全隐患,提升牵引供电系统再生制动能量直接利用率、供电能力和供电品质. 为保障树形贯通式同相供电系统的良好运行,从均衡电流、供电能力、负序评估、故障分析及保护配置4个方面研究该系统的运行状态. 构建不同拓扑结构下双边供电系统均衡电流评估模型,揭示重载铁路树形贯通式同相供电系统的外部电源构成方式;以某重载铁路树形贯通式同相供电改造方案为例,探究正常和故障运行工况下系统的供电能力以及系统对外部电网的负序影响;对该系统不同类型的故障进行分析,并提出保护配置方案. 研究结果表明:相较平行双边供电,当两相邻牵引变电所变压器变比相同时,树形贯通式同相供电系统不会产生均衡电流;改造方案上、下行牵引网最低网压为22.74 kV,满足牵引网电压要求;设置组合式同相供电装置后,系统的三相电压不平衡度95%概率大值和最大值分别为1.20%和1.65%;相较于传统保护装置方案,所提保护配置方案能够确保牵引网停电区间最小.

     

  • 图 1  电气化铁路双边供电方式

    Figure 1.  Bilateral power supply modes of electrified railway

    图 2  双边供电等值电路

    Figure 2.  Bilateral equivalent power supply circuit

    图 3  均衡电流变化规律(平行双边供电)

    Figure 3.  Equalizing current variation (parallel bilateral power supply)

    图 4  均衡电流变化规律(树形双边供电)

    Figure 4.  Equalizing current variation (tree bilateral power supply)

    图 5  树形贯通式同相供电系统

    Figure 5.  Tree continuous co-phase power supply system

    图 6  改造前的牵引供电系统

    Figure 6.  Traction power supply system before transformation

    图 7  采用树形贯通式同相供电系统的改造方案

    Figure 7.  Transformation schemes with tree continuous co-phase power supply system

    图 8  各类故障及保护装置示意

    Figure 8.  Various types of faults and protection devices

    表  1  正常供电情况下典型值统计结果

    Table  1.   Statistical results of simulation values under normal power supply

    年运量/
    万吨
    牵引网最低电压/kV 钢轨对地最高电压/V
    上行下行上行下行
    350024.3724.44 41.8142.33
    500025.2825.4615.3214.52
    下载: 导出CSV

    表  2  牵引变电所TS5故障时,TS4典型值统计结果

    Table  2.   Statistical results of simulation values of TS4 with traction substation TS5 fault

    方向 牵引网最低电压/kV 钢轨对地最高电压/V
    上行 22.74 50.44
    下行 22.87 16.34
    下载: 导出CSV

    表  3  牵引变电所TS4故障时,TS5典型值统计结果

    Table  3.   Statistical results of simulation values of TS5 with traction substation TS4 fault

    方向 牵引网最低电压/kV 钢轨对地最高电压/V
    上行 22.78 59.81
    下行 23.10 19.76
    下载: 导出CSV

    表  4  接触网不同位置发生故障时的保护装置动作分析

    Table  4.   Analysis of protection device action when faults occurred in different locations of overhead contact line system

    故障位置传统牵引供电系统保护装置动作情况树形贯通式同相供电系统保护装置动作情况
    K1  既有保护使断路器 DL31 动作切除故障供电臂  分段保护与测控装置识别故障区间并切除;如果不满足分段故障切除条件或分段保护装置故障,则既有保护使断路器 DL31 动作,切除故障供电臂,其余分段正常运行
    K2  DL32 闭合,不越区,开闭所 不闭合;既有保护使断路器 DL32 动作,切除 DL32 至 DL33间接触网;
     DL32闭合,越区,开闭所闭合;既有保护使断路器 DL32动作,切除 DL32至 DL35间接触网;
     DL35 闭合,越区,开闭所闭合;既有保护使断路器 DL35 动作,切除 DL35 至 DL 32 间接触网
     分段保护及测控装置识别故障区间并切除;如不满足分段故障切除条件或分段保护装置故障,则既有保护使断路器 DL32和 DL35 动作,切除故障接触网区间
    下载: 导出CSV

    表  5  系统各类故障分析及措施对比

    Table  5.   Analysis of various types of system faults and comparison of measures

    故障原因传统牵引供电系统树形贯通式同相供电系统
    接触网短路  既有保护切除牵引变电所接触网上网馈线断路器  快速保护:分段测控装置故障将该段接触网切除
     既有保护(后备):切除牵引变电所接触网上网馈线断路器,此时与未改造前情况一致
    牵引变压器短路  牵引变压器保护将变压器切除,备用牵引变压器投入运行  牵引变压器保护将变压器切除,备用牵引变压器投入运行
    同相供电装置短路  同相供电装置继电保护将同相供电支路切除,备用装置投入运行
    高压进线短路  牵引变电所反向保护断开电源进线,备用进线投入运行  牵引变电所反向保护断开电源进线,备用进线投入运行
    下载: 导出CSV
  • [1] 李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001

    LI Qunzhan. One new generation traction power supply system and its key technologies for electrification railway[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
    [2] 张丽艳,贾瑛,韩笃硕,等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报,2023,58(1): 22-29.

    ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29.
    [3] CHEN M W, LI Q Z, ROBERTS C, et al. Modelling and performance analysis of advanced combined co-phase traction power supply system in electrified railway[J]. IET Generation, Transmission & Distribution, 2016, 10(4): 906-916.
    [4] 王辉,李群湛,李晋,等. 基于YNd变压器与静止无功发生器的电气化铁路同相供电综合补偿方案[J]. 电工技术学报,2020,35(17): 3739-3749. doi: 10.19595/j.cnki.1000-6753.tces.190957

    WANG Hui, LI Qunzhan, LI Jin, et al. Comprehensive compensation schemes of cophase power supply of electrified railway based on YNd transformer and static var generator[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3739-3749. doi: 10.19595/j.cnki.1000-6753.tces.190957
    [5] 周志成. 基于树形双边供电的重载铁路贯通同相供电方案[J]. 铁道科学与工程学报,2020,17(3): 722-731. doi: 10.19713/j.cnki.43-1423/u.T20191011

    ZHOU Zhicheng. Cophase connected power supply scheme of heavy haul railway based on tree bilateral power supply[J]. Journal of Railway Science and Engineering, 2020, 17(3): 722-731. doi: 10.19713/j.cnki.43-1423/u.T20191011
    [6] 沈曼盛,周方圆. 国内外铁路牵引供电技术发展现状及趋势[J]. 电气化铁道,2019,30(1): 1-7,12. doi: 10.3969/j.issn.1007-936X.2019.01.001

    SHEN Mansheng, ZHOU Fangyuan. Current status and trend for development of railway traction power supply technologies at home and abroad[J]. Electric Railway, 2019, 30(1): 1-7,12. doi: 10.3969/j.issn.1007-936X.2019.01.001
    [7] 李群湛,王辉,解绍锋. 电气化铁路双边供电技术应用研究[J]. 电气化铁道,2021,32(6): 1-4. doi: 10.19587/j.cnki.1007-936x.2021.06.001

    LI Qunzhan, WANG Hui, XIE Shaofeng. Discussion on application of bilateral power supply technology on electrified railway[J]. Electric Railway, 2021, 32(6): 1-4. doi: 10.19587/j.cnki.1007-936x.2021.06.001
    [8] 智慧,袁勇,李剑,等. 双边供电模式下高速铁路AT供电系统供电能力计算与分析[J]. 中国铁路,2017(12): 66-71. doi: 10.19549/j.issn.1001-683x.2017.12.066

    ZHI Hui, YUAN Yong, LI Jian, et al. Calculation and analysis of the power supply capacity of the AT power supply system for high-speed railway under the two-way feeding model[J]. China Railway, 2017(12): 66-71. doi: 10.19549/j.issn.1001-683x.2017.12.066
    [9] CHOI K H. A phase-shifter for regulating circulating power flow in a parallel-feeding AC traction power system[J]. Journal of Electrical Engineering and Technology, 2014, 9(4): 1137-1144. doi: 10.5370/JEET.2014.9.4.1137
    [10] 晏寒,解绍锋,王辉,等. 树形双边贯通供电方案及其应用研究[J]. 电力自动化设备,2022,42(5): 191-197.

    YAN Han, XIE Shaofeng, WANG Hui, et al. Research on tree bilateral continuous power supply scheme and its application[J]. Electric Power Automation Equipment, 2022, 42(5): 191-197.
    [11] 李群湛,王辉,黄文勋,等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报,2021,36(5): 1064-1074. doi: 10.19595/j.cnki.1000-6753.tces.191740

    LI Qunzhan, WANG Hui, HUANG Wenxun, et al. Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074. doi: 10.19595/j.cnki.1000-6753.tces.191740
    [12] 赵元哲,李群湛,朱鹏,等. 新型双边供电系统谐波谐振特性分析[J]. 电力系统及其自动化学报,2017,29(8): 57-63. doi: 10.3969/j.issn.1003-8930.2017.08.009

    ZHAO Yuanzhe, LI Qunzhan, ZHU Peng, et al. Analysis of harmonic resonance in new bilateral power supply system[J]. Proceedings of the CSU-EPSA, 2017, 29(8): 57-63. doi: 10.3969/j.issn.1003-8930.2017.08.009
    [13] 辛成山,张美娟. 交流电气化铁道双边供电研究[J]. 电气化铁道,1998,9(3): 6-11.
    [14] 周志成,马庆安. 交流牵引供电系统双边供电均衡电流的预估方法[J]. 机车电传动,2020(4): 94-97. doi: 10.13890/j.issn.1000-128x.2020.04.019

    ZHOU Zhicheng, MA Qing’an. Prediction of balanced current in bilaterally-fed AC traction power supply system[J]. Electric Drive for Locomotives, 2020(4): 94-97. doi: 10.13890/j.issn.1000-128x.2020.04.019
    [15] 王辉,刘炜,李群湛,等. 基于源网荷统一链式电路的交流电气化铁路动态潮流计算[J]. 中国电机工程学报,2022,42(11): 3936-3953.

    WANG Hui, LIU Wei, LI Qunzhan, et al. Dynamic power flow calculation of AC electrified railway based on source-grid-load unified chain circuit[J]. Proceedings of the CSEE, 2022, 42(11): 3936-3953.
    [16] 李强,吴命利. 交流传动机车与直流传动机车混合运用条件下牵引网电压控制技术[J]. 铁道学报,2014,36(8): 19-24. doi: 10.3969/j.issn.1001-8360.2014.08.05

    LI Qiang, WU Mingli. Traction network voltage control techniques under the condition of hybrid application of AC drive and DC drive locomotives[J]. Journal of the China Railway Society, 2014, 36(8): 19-24. doi: 10.3969/j.issn.1001-8360.2014.08.05
    [17] 周栋,张威,雷佳华. 重载铁路桥隧地段钢轨电位分布及其抑制措施[J]. 铁路通信信号工程技术,2022,19(增1): 127-131.

    ZHOU Dong, ZHANG Wei, LEI Jiahua. Rail potential distribution and its suppression measures in bridge and tunnel sections of heavy-haul railway[J]. Railway Signalling & Communication Engineering, 2022, 19(S1): 127-131.
    [18] 周子槊,汪繁荣. 直供方式下影响钢轨电位分布的因素研究[J]. 湖北工业大学学报,2022,37(4): 49-53. doi: 10.3969/j.issn.1003-4684.2022.04.010

    ZHOU Zishuo, WANG Fanrong. Research on the factors affecting the rail potential distribution under the direct supply mode[J]. Journal of Hubei University of Technology, 2022, 37(4): 49-53. doi: 10.3969/j.issn.1003-4684.2022.04.010
    [19] WANG H, LIU W, LI Q Z, et al. Compensation of negative sequence for a novel AC integrated power supply system of urban rail transit[J]. IET Generation, Transmission & Distribution, 2021, 15(22): 3188-3203.
    [20] 陈启迪,张丽艳,朱毅,等. 电气化铁路负序预测评估方法[J]. 电力系统及其自动化学报,2018,30(11): 1-7. doi: 10.3969/j.issn.1003-8930.2018.11.001

    CHEN Qidi, ZHANG Liyan, ZHU Yi, et al. Negative-sequence prediction and evaluation method for electrified railway[J]. Proceedings of the CSU-EPSA, 2018, 30(11): 1-7. doi: 10.3969/j.issn.1003-8930.2018.11.001
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量——三相电压不平衡: GB/T 15543—2008[S]. 北京: 中国标准出版社, 2009.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  70
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-02-16
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2023-03-02

目录

    /

    返回文章
    返回