• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑气动力跨向振幅依存性和相关性的桥梁涡振响应分析

杨猛 王云飞 赵家斌 周敬 王永景 李永乐

杨猛, 王云飞, 赵家斌, 周敬, 王永景, 李永乐. 考虑气动力跨向振幅依存性和相关性的桥梁涡振响应分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220714
引用本文: 杨猛, 王云飞, 赵家斌, 周敬, 王永景, 李永乐. 考虑气动力跨向振幅依存性和相关性的桥梁涡振响应分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220714
YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220714
Citation: YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220714

考虑气动力跨向振幅依存性和相关性的桥梁涡振响应分析

doi: 10.3969/j.issn.0258-2724.20220714
基金项目: 国家自然科学基金(51525804)
详细信息
    作者简介:

    杨猛(1967—),男,高级工程师,研究方向为大型钢结构桥梁及钢结构建筑施工,E-mail:1044579277@qq.com

    通讯作者:

    王云飞(1990—),男,高级工程师,研究方向为大跨度钢结构桥梁施工及风振,E-mail:yunfei-wang@qq.com

  • 中图分类号: U441.2

Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces

  • 摘要:

    为研究非线性气动力跨向振幅依存性和跨向相关性对桥梁涡振响应的影响,首先,引入由振幅多项式表达的桥梁非线性气动力模型;其次,在二维涡振分析方法的基础上,通过理论分析提出同时考虑气动力的跨向振幅依存性和跨向相关性的三维涡振振幅响应分析方法;最后,以主跨1700 m的大跨度悬索桥为例,通过风洞实验识别其主梁在不同风攻角下的竖向涡振非线性气动力参数,进而分析不同风攻角下一阶正对称竖弯模态下的涡振振幅响应. 研究结果表明:当气动力沿跨向完全相关时,在气动力跨向振幅依存性的影响下,三维分析方法得到的各风速涡振响应明显大于二维分析,约大19%;当气动力沿跨向不完全相关时,三维分析的涡振振幅响应比不考虑相关性时降低明显,其中大部分风速下的降低范围在16%~30%,个别风速下约降低70%;证明了考虑气动力跨向不完全相关性和跨向振幅依存性对准确预测大跨度桥梁涡振响应的重要性;本文提出的分析方法对于扭转涡振及高阶模态下涡振分析同样适用.

     

  • 图 1  节段模型断面尺寸

    Figure 1.  Bridge deck section model

    图 2  风洞中的模型设置

    Figure 2.  Model set-up in wind tunnel

    图 3  竖弯涡振振幅响应结果

    Figure 3.  Vibration amplitude for vertical VIV

    图 4  竖弯涡振位移时程响应($ \alpha = $ + 3°, U = 1.15 m/s)

    Figure 4.  Time history of displacement for vertical VIV ($ \alpha = $ + 3°, U = 1.15 m/s)

    图 5  不同涡振风速下非线性气动导数$ {H}_{1}^{*} $随振幅的变化

    Figure 5.  Variation of nonlinear aerodynamic derivative $ {H}_{1}^{*} $ with amplitude at different VIV wind speeds

    图 6  悬索桥一阶正对称竖弯模态

    Figure 6.  First-order positive symmetrical vertical mode of suspension bridge

    图 7  考虑气动力跨向不完全相关性时的折减因子$ {\mathrm{\lambda }}_{{H}_{1}^{\mathrm{*}}} $

    Figure 7.  Reduction factor $ {\mathrm{\lambda }}_{{H}_{1}^{\mathrm{*}}} $ with consideration of spanwise partial correlation of aerodynamic forces

    图 8  考虑气动力跨向不完全相关性时悬索桥非线性气动阻尼比$ {\xi }_{ha} $

    Figure 8.  Nonlinear aerodynamic damping ratio $ {\xi }_{ha} $ of suspension bridge with consideration of spanwise partial correlation of aerodynamic forces

    图 9  悬索桥不同风攻角下三维竖向涡振振幅响应预测

    Figure 9.  Prediction of 3D vertical VIV amplitude of suspension bridge at different angles of wind attack

  • [1] 李加武,方成,侯利明,等. 大跨径桥梁静风稳定参数的敏感性分析[J]. 振动与冲击,2014,33(4): 124-130.

    LI Jiawu, FANG Cheng, HOU Liming, et al. Sensitivity analysis for aerostatic stability parameter of a long-span bridge[J]. Journal of Vibration and Shock, 2014, 33(4): 124-130.
    [2] WU B, CHEN X Z, WANG Q, et al. Characterization of vibration amplitude of nonlinear bridge flutter from section model test to full bridge estimation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104048.1-104048.14. doi: 10.1016/j.jweia.2019.104048
    [3] 朱金,黄旭,熊籽跞,等. 大跨度悬索桥竖弯涡振条件下驾驶员行车视线研究[J]. 西南交通大学学报,2023,58(1): 191-201.

    ZHU Jin, HUANG Xu, XIONG Ziluo, et al. Study on driver’s sight line under vertical vortex-induced vibration of long span suspension bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 191-201.
    [4] CHEN X Z. Estimation of stochastic crosswind response of wind-excited tall buildings with nonlinear aerodynamic damping[J]. Engineering Structures, 2013, 56: 766-778. doi: 10.1016/j.engstruct.2013.05.044
    [5] WANG Y F, CHEN X Z, LI Y L. Nonlinear self-excited forces and aerodynamic damping associated with vortex-induced vibration and flutter of long span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104207.1-104207.21.
    [6] 李永乐,侯光阳,向活跃,等. 大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究[J]. 空气动力学学报,2011,29(6): 702-708. doi: 10.3969/j.issn.0258-1825.2011.06.004

    LI Yongle, HOU Guangyang, XIANG Huoyue, et al. Optimization of the vortex induced vibration for steel box girder of long span suspension bridges by wind tunnel test[J]. Acta Aerodynamica Sinica, 2011, 29(6): 702-708. doi: 10.3969/j.issn.0258-1825.2011.06.004
    [7] 马存明,王俊鑫,罗楠,等. 宽幅分体箱梁涡振性能及其抑振措施[J]. 西南交通大学学报,2019,54(4): 724-730.

    MA Cunming, WANG Junxin, LUO Nan, et al. Vortex-induced vibration performance and control measures of wide twin-box girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730.
    [8] 张天翼,孙延国,李明水,等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究[J]. 中国公路学报,2019,32(10): 107-114,168.

    ZHANG Tianyi, SUN Yanguo, LI Mingshui, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a wide-width double-box composite beam[J]. China Journal of Highway and Transport, 2019, 32(10): 107-114,168.
    [9] 李明,孙延国,李明水,等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报,2018,53(4): 712-719.

    LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719.
    [10] 葛耀君,赵林,许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报,2019,32(10): 1-18.

    GE Yaojun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18.
    [11] EHSAN F, SCANLAN R H. Vortex-induced vibrations of flexible bridges[J]. Journal of Engineering Mechanics, 1990, 116(6): 1392-1411. doi: 10.1061/(ASCE)0733-9399(1990)116:6(1392)
    [12] LARSEN A. A generalized model for assessment of vortex-induced vibrations of flexible structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 281-294.
    [13] ZHU L D, MENG X L, GUO Z S. Nonlinear mathematical model of vortex-induced vertical force on a flat closed-box bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 122: 69-82. doi: 10.1016/j.jweia.2013.07.008
    [14] SUN Y G, LI M S, LIAO H L. Nonlinear approach of vortex-induced vibration for line-like structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 1-6. doi: 10.1016/j.jweia.2013.10.011
    [15] LI M S, LI S P, LIAO H L, et al. Spanwise correlation of aerodynamic forces on oscillating rectangular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 154: 47-57. doi: 10.1016/j.jweia.2016.04.003
    [16] ZHOU S, HUA X G, CHEN Z Q, et al. Experimental investigation of correction factor for VIV amplitude of flexible bridges from an aeroelastic model and its 1∶1 section model[J]. Engineering Structures, 2017, 141: 263-271. doi: 10.1016/j.engstruct.2017.03.023
    [17] SCANLAN R H. The action of flexible bridges under wind, I: Flutter theory[J]. Journal of Sound and Vibration, 1978, 60(2): 187-199. doi: 10.1016/S0022-460X(78)80028-5
    [18] MASHNAD M, JONES N P. A model for vortex-induced vibration analysis of long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 96-108. doi: 10.1016/j.jweia.2014.09.002
    [19] SIMIU E, SCANLAN R. Wind effects on structures: an introduction to wind engineering[M]. New York: John Wiley, 1986.
  • 加载中
图(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  68
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-03-01
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回