• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同直流拓扑和敷设环境下35 kV交流XLPE电缆直流载流量分析

张添胤 王启隆 王新 金泱 杨敏 陈向荣

张添胤, 王启隆, 王新, 金泱, 杨敏, 陈向荣. 不同直流拓扑和敷设环境下35 kV交流XLPE电缆直流载流量分析[J]. 西南交通大学学报, 2024, 59(6): 1285-1293, 1304. doi: 10.3969/j.issn.0258-2724.20220704
引用本文: 张添胤, 王启隆, 王新, 金泱, 杨敏, 陈向荣. 不同直流拓扑和敷设环境下35 kV交流XLPE电缆直流载流量分析[J]. 西南交通大学学报, 2024, 59(6): 1285-1293, 1304. doi: 10.3969/j.issn.0258-2724.20220704
ZHANG Tianyin, WANG Qilong, WANG Xin, JIN Yang, YANG Min, CHEN Xiangrong. Direct Current Ampacity of 35 kV Alternating Current Cross-Linked Polyethylene Cables Under Various Direct Current Topologies and Laying Environments[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1285-1293, 1304. doi: 10.3969/j.issn.0258-2724.20220704
Citation: ZHANG Tianyin, WANG Qilong, WANG Xin, JIN Yang, YANG Min, CHEN Xiangrong. Direct Current Ampacity of 35 kV Alternating Current Cross-Linked Polyethylene Cables Under Various Direct Current Topologies and Laying Environments[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1285-1293, 1304. doi: 10.3969/j.issn.0258-2724.20220704

不同直流拓扑和敷设环境下35 kV交流XLPE电缆直流载流量分析

doi: 10.3969/j.issn.0258-2724.20220704
详细信息
    作者简介:

    张添胤(2000—),男,博士研究生,研究方向为高压直流输电和电力电缆技术,E-mail:zhangtianyin_zju@163.com

    通讯作者:

    陈向荣(1982—),男,研究员,研究方向为先进电气材料与高压绝缘测试技术、先进电力装备与新型电力系统、高电压新技术,E-mail:chenxiangrongxh@zju.edu.cn

  • 中图分类号: TM247

Direct Current Ampacity of 35 kV Alternating Current Cross-Linked Polyethylene Cables Under Various Direct Current Topologies and Laying Environments

  • 摘要:

    交流电缆改为直流运行对于新能源发电并网以及提高供电容量有着重要意义. 以35 kV交流交联聚乙烯(cross-linked polyethylene,XLPE)电缆为研究对象,采用有限元方法对三线双极式、单极式和双极式3种直流拓扑结构下的三芯交流电缆进行温度场仿真;同时考虑配电网中常见的影响因素,如靠近热水管道、电缆集群敷设、电流不平衡等,研究其对交流电缆改为直流运行下的电缆载流量的影响. 研究发现:在相同工作温度下,35 kV交流XLPE电缆在单极式直流拓扑结构下运行时的载流量最小,在三线双极式直流拓扑下运行时的载流量最大;当交流电缆与城市供水管道水平间距为2.0 m,垂直间距为0.5 m时,在上述3种直流拓扑下运行时的载流量下降了约3.0%;在电缆集群敷设时,加载非同步峰值能使载流量最大提升90 A;电缆载流量随电流不平衡度先增大后减小,在不平衡度为0时,电缆载流量达到最大. 研究结果为35 kV交流XLPE电缆的直流改造提供了参考依据.

     

  • 图 1  三相电缆的双极式直流运行方案

    Figure 1.  Bipolar DC operation scheme of three-phase cables

    图 2  三相电缆的单极式直流运行方案

    Figure 2.  Monopolar DC operation scheme of three-phase cables

    图 3  三相电缆的TWBS-HVDC直流运行方案

    Figure 3.  TWBS-HVDC operation scheme of three-phase cables

    图 4  电缆的敷设环境

    Figure 4.  Laying environment of cable

    图 5  网格剖分

    Figure 5.  Mesh settings

    图 6  不同直流拓扑和直流负荷的缆芯温度

    Figure 6.  Cable core temperature under different DC topologies and loads

    图 7  通过210.0 A电流时单极式电缆的温度场分布

    Figure 7.  Temperature field distribution of monopolar cable at current of 210.0 A

    图 8  通过240.0 A电流时双极式电缆的温度场分布

    Figure 8.  Temperature field distribution of bipolar cable at current of 240.0 A

    图 9  不同直流拓扑和工作温度的电缆载流量

    Figure 9.  Cable ampacity under different DC topologies and operating temperatures

    图 10  热水管与电缆的相对位置

    Figure 10.  Distance from hot water pipe to cable

    图 11  电缆载流量随热水管道和电缆距离的变化

    Figure 11.  Variation of cable ampacity with distance from hot water pipe to cable

    图 12  集群电缆加载相同直流负荷时的温度场分布

    Figure 12.  Temperature field distribution of cluster cables under the same DC load

    图 13  单根电缆运行时的温度场分布

    Figure 13.  Temperature field distribution of a single cable in operation

    图 14  集群电缆加载不同负荷时的温度场分布

    Figure 14.  Temperature field distribution of cluster cables under different loads

    图 15  电缆温度场分布

    Figure 15.  Temperature field distribution of cable

    图 16  电流不平衡度和三芯电流和之间的关系

    Figure 16.  Relationship between current unbalance and three-core current sum

    表  1  电缆材料与尺寸参数

    Table  1.   Cable materials and size parameters

    结构名称 材料 厚度/mm 直径/mm
    导体 13.0
    导体屏蔽层 半导体混合物 0.8 14.6
    XLPE 屏蔽层 XLPE 10.5 35.6
    绝缘屏蔽层 半导体混合物 1.0 37.6
    铜屏蔽层 0.2 38.0
    包带 聚丙烯 0.4 83.2
    内护套 聚氯乙烯 2.0 87.2
    铠装层 1.6 90.4
    外护套 聚氯乙烯 5.0 100.4
    下载: 导出CSV

    表  2  电缆材料的物理参数

    Table  2.   Physical parameters of cable materials

    材料 密度/
    (kg·m−3
    比热容/
    (J·(kg·K)−1
    热导率/
    (W·(m·K)−1
    8900 380 385.00
    XLPE 1200 1000 0.29
    聚氯乙烯 1380 1000 0.16
    半导电材料 1200 1100 0.28
    填充材料 550 1900 0.25
    7850 450 45.00
    下载: 导出CSV

    表  3  热水管道的材料和结构参数

    Table  3.   Hot water pipe materials and structural parameters

    结构名称 材料 厚度/mm 半径/mm
    工作区 516
    保温层 硬质聚氨酯 65 581
    外护管 高密度聚乙烯 15 596
    螺旋焊缝钢管 14 610
    下载: 导出CSV
  • [1] 郑欢,江道灼,杜翼. 交流配电网与直流配电网的经济性比较[J]. 电网技术,2013,37(12): 3368-3374.

    ZHENG Huan, JIANG Daozhuo, DU Yi. Economic comparison of AC and DC distribution system[J]. Power System Technology, 2013, 37(12): 3368-3374.
    [2] ALASSI A, BAÑALES S, ELLABBAN O, et al. HVDC transmission: technology review, market trends and future outlook[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 530-554. doi: 10.1016/j.rser.2019.04.062
    [3] WANG M, AN T, ERGUN H K, et al. Review and outlook of HVDC grids as backbone of transmission system[J]. CSEE Journal of Power and Energy Systems, 2021, 7(4): 797-810.
    [4] 徐政,许烽. 输电线路交改直的关键技术研究[J]. 高电压技术,2016,42(1): 1-10.

    XU Zheng, XU Feng. Research on key technologies of AC-to-DC transmission lines conversion[J]. High Voltage Engineering, 2016, 42(1): 1-10.
    [5] YU J, SMITH K, URIZARBARRENA M, et al. Initial designs for the ANGLE DC project; converting existing AC cable and overhead line into DC operation[C]//13th IET International Conference on AC and DC Power Transmission (ACDC 2017). Manchester: IET, 2017: 1-6.
    [6] 刘英,曹晓珑,何子兰,等. 现役交流XLPE电缆配电线路改为直流运行的技术方案及实例分析[J]. 中国电机工程学报,2016,36(1): 96-103.

    LIU Ying, CAO Xiaolong, HE Zilan, et al. Technical scheme and case study of the uprating renovation of existing XLPE cables from AC distribution system to DC operation[J]. Proceedings of the CSEE, 2016, 36(1): 96-103.
    [7] LIU Y, CAO X L, FU M L. The upgrading renovation of an existing XLPE cable circuit by conversion of AC line to DC operation[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1321-1328. doi: 10.1109/TPWRD.2015.2496178
    [8] 郑雁翎. 电缆线路的电缆群载流量优化数值计算模型研究[J]. 高电压技术,2015,41(11): 3760-3765.

    ZHENG Yanling. Research on optimal numerical caculation model of cable groups ampacity in cable route[J]. High Voltage Engineering, 2015, 41(11): 3760-3765.
    [9] 郑雁翎,许志亮,张冠军,等. 采用MATLAB仿真的变电站高压进线温度场和载流量数值计算[J]. 高电压技术,2012,38(3): 566-572.

    ZHENG Yanling, XU Zhiliang, ZHANG Guanjun, et al. Numerical calculation of temperature field and ampacity of high-voltage lines using MATLAB[J]. High Voltage Engineering, 2012, 38(3): 566-572.
    [10] 王启隆,王国海,陈向荣,等. 10 kV交流XLPE电缆改为直流运行的热电耦合仿真[J]. 西南交通大学学报,2022,57(1): 46-54. doi: 10.3969/j.issn.0258-2724.20200111

    WANG Qilong, WANG Guohai, CHEN Xiangrong, et al. Thermo-electric coupling simulation for 10 kV AC XLPE cable in DC operation[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 46-54. doi: 10.3969/j.issn.0258-2724.20200111
    [11] 刘士利,李宁,蔡国伟,等. 66kV交流交联聚乙烯电缆线路改为直流运行的直流载流量[J]. 高电压技术,2017,43(5): 1664-1669.

    LIU Shili, LI Ning, CAI Guowei, et al. DC ampacity of 66 kV AC XLPE cable line transformed into DC operation[J]. High Voltage Engineering, 2017, 43(5): 1664-1669.
    [12] LI J X, YANG F, FANG Z K, et al. Assessment on capacity expansion of AC XLPE cable under DC operation with the constraint of temperature and electric field intensity[J]. IET Generation, Transmission & Distribution, 2022, 16(13): 2612-2622.
    [13] 许烽,徐政. 一种适用于交流线路改造成直流的扩展式双极直流输电结构[J]. 中国电机工程学报,2014,34(33): 5827-5835.

    XU Feng, XU Zheng. An extended bipole HVDC structure with three wires for conversion of AC lines to HVDC[J]. Proceedings of the CSEE, 2014, 34(33): 5827-5835.
    [14] LIU Y, ZHANG S D, CAO X L, et al. Simulation of electric field distribution in the XLPE insulation of a 320 kV DC cable under steady and time-varying states[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(3): 954-964. doi: 10.1109/TDEI.2018.006973
    [15] 陈铮铮,赵健康,欧阳本红,等. 直流电缆料工作温度和击穿特性的纳米改性研究[J]. 高电压技术,2015,41(4): 1214-1227.

    CHEN Zhengzheng, ZHAO Jiankang, OUYANG Benhong, et al. Study on the nanoparticle-modification of working temperature and breakdown characteristics for insulating materials in DC cables[J]. High Voltage Engineering, 2015, 41(4): 1214-1227.
    [16] 杨黎明,朱智恩,杨荣凯,等. 柔性直流电缆绝缘料及电缆结构设计[J]. 电力系统自动化,2013,37(15): 117-124. doi: 10.7500/AEPS20130607005

    YANG Liming, ZHU Zhien, YANG Rongkai, et al. Insulation material and structure design of HVDC flexible cables[J]. Automation of Electric Power Systems, 2013, 37(15): 117-124. doi: 10.7500/AEPS20130607005
    [17] Internation Electrotechnical Commission. Electric cables—calculation of the current rating—part 1-3: current rating equations (100% load factor) and calculation of losses—current sharing between parallel single-core cables and calculation of circulating current losses: IEC 60287-1-3[S]. Geneva: IEC National Committees, 2014.
    [18] 中华人民共和国住房和城乡建设部. 城镇供热直埋热水管道技术规程:CJJ/T 81—2013 [S]. 北京:中国建筑工业出版社,2013.
    [19] 陈向荣,王启隆,于竞哲,等. 10 kV交流XLPE电缆在不同直流拓扑结构和敷设方式下的直流载流量仿真研究[J]. 高电压技术,2021,47(11): 4044-4054.

    CHEN Xiangrong, WANG Qilong, YU Jingzhe, et al. Simulation research on DC ampacity of 10 kV AC XLPE cable under different DC operation topologies and laying modes[J]. High Voltage Engineering, 2021, 47(11): 4044-4054.
    [20] 曾嵘,赵宇明,赵彪,等. 直流配用电关键技术研究与应用展望[J]. 中国电机工程学报,2018,38(23): 6790-6801.

    ZENG Rong, ZHAO Yuming, ZHAO Biao, et al. A prospective look on research and application of DC power distribution technology[J]. Proceedings of the CSEE, 2018, 38(23): 6790-6801.
    [21] 阮羚,赵艾萱,邓丹,等. 三芯电缆不平衡电流对温度分布的影响[J]. 高电压技术,2018,44(8): 2704-2709.

    RUAN Ling, ZHAO Aixuan, DENG Dan, et al. Influence of unbalanced current in 3-core power cable on temperature distribution[J]. High Voltage Engineering, 2018, 44(8): 2704-2709.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2023-04-17
  • 网络出版日期:  2024-08-31
  • 刊出日期:  2023-05-08

目录

    /

    返回文章
    返回