• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于M序列的磁电法探测坝基渗漏试验研究

刘瑾 车文越 钱卫 张化鹏 黄国娇 丁亮 何秀凤

刘瑾, 车文越, 钱卫, 张化鹏, 黄国娇, 丁亮, 何秀凤. 基于M序列的磁电法探测坝基渗漏试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220681
引用本文: 刘瑾, 车文越, 钱卫, 张化鹏, 黄国娇, 丁亮, 何秀凤. 基于M序列的磁电法探测坝基渗漏试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220681
LIU Jin, CHE Wenyue, QIAN Wei, ZHANG Huapeng, HUANG Guojiao, DING Liang, HE Xiufeng. Experimental Study on Dam Foundation Leakage Detection by Magnetoelectric Method Based on M Sequence[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220681
Citation: LIU Jin, CHE Wenyue, QIAN Wei, ZHANG Huapeng, HUANG Guojiao, DING Liang, HE Xiufeng. Experimental Study on Dam Foundation Leakage Detection by Magnetoelectric Method Based on M Sequence[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220681

基于M序列的磁电法探测坝基渗漏试验研究

doi: 10.3969/j.issn.0258-2724.20220681
基金项目: 国家重点研发计划(2018YFC1508501)
详细信息
    通讯作者:

    刘瑾(1983—),女,教授,博士,研究方向为工程地质、堤坝渗漏探测,E_mail:Jinliu920@163.com

  • 中图分类号: TV221

Experimental Study on Dam Foundation Leakage Detection by Magnetoelectric Method Based on M Sequence

  • 摘要:

    坝基渗漏问题是影响水库大坝整体安全的关键因素. 为有效、准确探测坝基渗漏,基于伪随机辨识原理,将M序列相关辨识的磁电法技术应用于堤坝渗漏探测. 首先,通过物理模型试验分析,获取不同渗漏深度下的磁感应强度分布、均方差及变异系数特征;然后,设计不同渗漏形态、高阻屏蔽层及渗漏通道数量条件,获取探测结果对倾斜通道、高阻屏蔽层以及多条渗漏通道的响应特征;最后,通过云南红石岩堰塞坝现场试验,分析该技术的可行性. 试验结果表明:在不同埋深条件下,磁感应强度最大值的变异系数均控制在2%以内;渗漏通道的倾斜引起磁感应强度沿渗漏方向缓慢降低,其磁场等值线图的脊线反映倾斜渗漏方向;高阻屏蔽层仅对磁感应强度产生影响,磁感应强度误差在10%~20%之间;多组渗漏通道会反映在磁场等值线图中异常场的多处集中分布;现场试验探测的渗流流向分别为NW300°,SW265°,W215°和NW305°.

     

  • 图 1  伪随机辨识计算步骤

    Figure 1.  Calculation steps of pseudo-random identification

    图 2  模型试验的仪器设备和装置布置

    Figure 2.  Equipment and layout of model test

    图 3  2.5 Ω•m模型试验不同埋深位置的磁场等值线图

    Figure 3.  Magnetic field contour map under different buried depth conditions in 2.5 Ω•m model test

    图 4  倾斜渗漏通道磁场等值线图

    Figure 4.  Contour map of magnetic field under inclined leakage channel

    图 5  存在高阻屏蔽层时的磁场等值线图

    Figure 5.  Contour map of magnetic field under high-resistance shielding layer

    图 6  双渗漏土槽模型试验磁场等值线图

    Figure 6.  Magnetic field contour map in double-leakage soil bin test

    图 7  现场试验布置

    Figure 7.  Layout of field test

    图 8  测区坐标轴设置

    Figure 8.  Coordinate axis setting of measuring area

    图 9  磁场等值线图对比

    Figure 9.  Comparison of magnetic field contour maps

    表  1  高精度磁电探测仪器性能指标

    Table  1.   Performance indexes of high-precision magnetoelectric detection instrument

    项目 性能
    发射功率/W 2000
    发射电压/V 20 ~1200
    发射电流/A 0.01~5.00
    发射波形 M序列
    位宽/ms 100~2000
    阶数/阶 4~12
    频带宽度/Hz 0.01~50.00
    同步方式 GPS 同步
    工作温度/℃ −20~70
    磁力仪精度/T 1 × 10−9
    最大测深/m 1000
    下载: 导出CSV

    表  2  模型试验方案设置

    Table  2.   Scheme setting of model test

    试验组 渗漏通道电阻率/
    (Ω·m)
    通道埋深/cm 通道数量/个 渗漏通道状态 屏蔽层
    2.5 Ω•m土槽试验2.551平直
    10平直
    20平直
    5倾斜
    高阻屏蔽层影响试验2.5101平直
    双渗漏土槽模型试验2.5102平直,平行
    平直,不平行
    下载: 导出CSV

    表  3  2.5 Ω•m模型试验均方差及变异系数

    Table  3.   Mean square error and variation coefficients in 2.5 Ω•m model test

    渗漏埋深/cm S/( × 10−9 T) CV/%
    5 2.78 0.41
    10 3.16 0.94
    20 3.32 1.93
    下载: 导出CSV

    表  4  渗漏磁感应强度最大值

    Table  4.   Maximum magnetic induction intensity of leakage × 10−7 T

    测线 测点 平行渗漏 非平行渗漏
    152.382.19
    92.362.07
    2172.302.11
    212.232.04
    3292.282.13
    332.391.98
    4412.352.06
    452.261.99
    下载: 导出CSV

    表  5  磁感应强度极值大小及异常埋深

    Table  5.   Extreme value of magnetic induction intensity and abnormal burial depth

    测点号 B/( × 10−9 T) 埋深/m
    4 2.7 14.6
    18 11.4 3.6
    21 7.8 5.2
    26 17.0 2.2
    下载: 导出CSV
  • [1] 中华人民共和国水利部. 2021中国水利发展报告[M]. 北京:中国水利水电出版社,2021.
    [2] 张聪,姚令侃,黄艺丹,等. 地震共振涌浪作用下冰碛堰塞坝的漫顶溃决[J]. 西南交通大学学报,2021,56(3): 564-571.

    ZHANG Cong, YAO Lingkan, HUANG Yidan, et al. Overtopping failure of moraine dams under action of earthquake-induced resonant water surges[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 564-571.
    [3] 赵海鑫,姚令侃,黄艺丹,等. 地震与滑坡碎屑流引发堰塞湖涌浪动水压力研究[J]. 西南交通大学学报,2021,56(3): 558-563.

    ZHAO Haixin, YAO Lingkan, HUANG Yidan, et al. Hydrodynamic pressures study of barrier lake under coaction of earthquake and clastic flow landslide[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 558-563.
    [4] 杨雄兵. 某水库坝基渗漏规律与模式研究[D]. 兰州:兰州大学,2019.
    [5] 徐轶,谭政,位敏. 水库大坝渗漏常用探测技术及工程应用[J]. 中国水利,2021(4): 48-51. doi: 10.3969/j.issn.1000-1123.2021.04.025

    XU Yi, TAN Zheng, WEI Min. Typical leakage detection techniques and the application for reservoir dams[J]. China Water Resources, 2021(4): 48-51. doi: 10.3969/j.issn.1000-1123.2021.04.025
    [6] 苏怀智,周仁练. 土石堤坝渗漏病险探测模式和方法研究进展[J]. 水利水电科技进展,2022,42(1): 1-10,39.

    SU Huaizhi, ZHOU Renlian. Research progress and prospect of earth-rockfill dam leakage detection modes and method[J]. Advances in Science and Technology of Water Resources, 2022, 42(1): 1-10,39.
    [7] 邹德兵,傅兴安,闵征辉. 磁电阻率法在水库渗漏探测中的应用[J]. 水利与建筑工程学报,2019,17(5): 148-152.

    ZOU Debing, FU Xing’an, MIN Zhenghui. Application of magnetometric resistivity method in reservoir leakage detection[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 148-152.
    [8] 徐磊,张建清,严俊,等. 磁电阻率法在平原水库渗漏探测中的试验研究[J]. 地球物理学进展,2021,36(5): 2222-2233. doi: 10.6038/pg2021EE0069

    XU Lei, ZHANG Jianqing, YAN Jun, et al. Experimental research of magnetic resistivity method in plain reservoir leakage detection[J]. Progress in Geophysics, 2021, 36(5): 2222-2233. doi: 10.6038/pg2021EE0069
    [9] EDWARDS R N. The magnetometric resistivity method and its application to the mapping of a fault[J]. Canadian Journal of Earth Sciences, 1974, 11(8): 1136-1156. doi: 10.1139/e74-108
    [10] HOWLAND-ROSE A W, LINFORD G, PITCHER D H, et al. Some recent magnetic induced-polarization developments—part I: theory[J]. Geophysics, 1980, 45(1): 37-54. doi: 10.1190/1.1441038
    [11] PAI D, EDWARDS R N. Programme MMR2DFD: finite difference modeling of MMR anomlales[J]. Reports in Applied Geophysics, 1983, 25(4): 1453-1456.
    [12] OPPLIGER G L. Three-dimensional terrain corrections for mise-á-la-masse and magnetometric resistivity surveys[J]. Exploration Geophysics, 1984, 15(3): 194-195.
    [13] NABIGHIAN M N, OPPLIGER G L, EDWARDS R N, et al. Cross-hole magnetometric resistivity (MMR)[J]. Geophysics, 1984, 49(8): 1313-1326. doi: 10.1190/1.1441758
    [14] CUNNINGHAM A B. Some alternate vibrator signals[J]. Geophysics, 1979, 44(12): 1901-1921. doi: 10.1190/1.1440947
    [15] 柴治媛. 可控震源伪随机扫描方法与地震响应的数值模拟[D]. 长春: 吉林大学,2007.
    [16] 张群英,方广有. 伪随机序列编码脉冲信号在探地雷达中的应用研究[J]. 电子与信息学报,2011,33(2): 424-428.

    ZHANG Qunying, FANG Guangyou. The study of pseudo random sequence’s application to GPR[J]. Journal of Electronics & Information Technology, 2011, 33(2): 424-428.
    [17] 齐彦福,殷长春,王若,等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报,2015,58(7): 2566-2577. doi: 10.6038/cjg20150731

    QI Yanfu, YIN Changchun, WANG Ruo, et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese Journal of Geophysics, 2015, 58(7): 2566-2577. doi: 10.6038/cjg20150731
    [18] 王显祥,底青云,王妙月,等. 基于m伪随机序列的电磁法抗噪能力分析[J]. 地球物理学报,2016,59(5): 1861-1874. doi: 10.6038/cjg20160529

    WANG Xianxiang, DI Qingyun, WANG Miaoyue, et al. A study on the noise immunity of electromagnetic methods based on m pseudo-random sequence[J]. Chinese Journal of Geophysics, 2016, 59(5): 1861-1874. doi: 10.6038/cjg20160529
    [19] 颜廷杰,王赛昕,马一行,等. 人文干扰对电法勘探的影响及应对措施[J]. 矿产勘查,2016,7(4): 634-639. doi: 10.3969/j.issn.1674-7801.2016.04.016

    YAN Tingjie, WANG Saixin, MA Yixing, et al. Influence of human interference on application of electrical prospecting and corresponding anti-interference measures[J]. Mineral Exploration, 2016, 7(4): 634-639. doi: 10.3969/j.issn.1674-7801.2016.04.016
    [20] 王洪波. KGR-1B抗干扰电法仪在石墨矿地区的运用[J]. 煤炭与化工,2018,41(4): 79-82.

    WANG Hongbo. Application of KGR-1B anti-jamming electro-detecting in graphite ore deposit[J]. Coal and Chemical Industry, 2018, 41(4): 79-82.
    [21] 李巧灵,雷晓东,李晨. 抗干扰编码电法在通州深部岩溶发育区地质构造探测中的应用[J]. 工程勘察,2018,46(2): 71-78.

    LI Qiaoling, LEI Xiaodong, LI Chen. Application of a coded electrical method with anti-interference ability to detect geological structures in Tongzhou karst areas[J]. Geotechnical Investigation & Surveying, 2018, 46(2): 71-78.
    [22] 罗先中,李达为,彭芳苹,等. 抗干扰编码电法仪的实现及应用[J]. 地球物理学进展,2014,29(2): 944-951. doi: 10.6038/pg20140263

    LUO Xianzhong, LI Dawei, PENG Fangping, et al. Implementation and applications of an coded electrical instrument with anti-interference ability[J]. Progress in Geophysics, 2014, 29(2): 944-951. doi: 10.6038/pg20140263
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  23
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-01-02
  • 网络出版日期:  2024-07-20

目录

    /

    返回文章
    返回