• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

城轨交通制动能量利用技术研究现状与展望

刘继宗 张祖涛 王浩 孔苓吉 伊敏熠 朱忠尹

刘继宗, 张祖涛, 王浩, 孔苓吉, 伊敏熠, 朱忠尹. 城轨交通制动能量利用技术研究现状与展望[J]. 西南交通大学学报, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676
引用本文: 刘继宗, 张祖涛, 王浩, 孔苓吉, 伊敏熠, 朱忠尹. 城轨交通制动能量利用技术研究现状与展望[J]. 西南交通大学学报, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676
LIU Jizong, ZHANG Zutao, WANG Hao, KONG Lingji, YI Minyi, ZHU Zhongyin. Braking Energy Utilization in Urban Rail Transit: Status and Prospects[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676
Citation: LIU Jizong, ZHANG Zutao, WANG Hao, KONG Lingji, YI Minyi, ZHU Zhongyin. Braking Energy Utilization in Urban Rail Transit: Status and Prospects[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676

城轨交通制动能量利用技术研究现状与展望

doi: 10.3969/j.issn.0258-2724.20220676
基金项目: 国家自然科学基金项目(51975490);四川省科技厅省院省校合作项目(2021YFSY0059);四川省科技厅重大项目(2021YFQ0055)
详细信息
    作者简介:

    刘继宗(1983—),男,助理研究员,博士,研究方向为机械制动能采集及其储存, E-mail:liujizong@swjtu.edu.cn

    通讯作者:

    张祖涛(1974—),男,教授,博士生导师,研究方向为机械能采集及其存储技术,E-mail:zzt@swjtu.edu.cn

  • 中图分类号: TK018

Braking Energy Utilization in Urban Rail Transit: Status and Prospects

  • 摘要:

    城市轨道交通的发展对缓解城市交通拥堵问题有着重要作用,而其再生制动能量利用技术也备受关注. 目前,逆变式再生制动能量利用技术包括回馈电路拓扑结构、车-网电压关系和回馈装置优化;其余再生制动能量利用技术包括超级电容储能、飞轮储能、电池储能在内的各类储能式. 本文系统而全面地回顾了基于逆变回馈和储能回馈的城市轨道交通再生制动能量利用技术,指出技术发展过程中的特征、趋势以及关键研究问题,包括提升储能密度、系统稳定性与装置寿命,为该领域的进一步探索和商业化发展提供指导. 同时对城市轨道交通再生制动能量利用技术的研究趋势进行分析,未来研究方向可聚焦于系统拓扑优化、储能容量、系统稳定性、使用寿命及技术经济分析等方面.

     

  • 图 1  逆变回馈技术原理

    Figure 1.  Principle of inverter feedback technology

    图 2  APQC拓扑电路[41]

    Figure 2.  APQC topology circuit[41]

    图 3  直流总线电压与电网关系

    Figure 3.  Relationship between DC bus voltage and grid

    图 4  逆变回馈装置组成

    Figure 4.  Composition of inverter feedback device

    图 5  城轨交通储能式再生制动能量利用原理

    Figure 5.  Energy utilization principle of energy storage type regenerative braking in urban rail transit

    图 6  超级电容储能型原理

    Figure 6.  Supercapacitor energy storage principle

    图 7  飞轮装置本体结构示意

    Figure 7.  Flywheel device structure

    图 8  飞轮储能实验平台拓扑图[118]

    Figure 8.  Topology of flywheel energy storage experimental platform [118]

    图 9  直流供电系统仿真平台[135]

    Figure 9.  DC power supply system simulation platform[135]

    图 10  超导磁储能系统结构

    Figure 10.  Structure of superconducting magnetic energy storage system

    图 11  储能式城轨交通再生制动能量利用技术实际应用案例图解

    Figure 11.  Illustration of application case of energy utilization technology of energy storage type regenerative braking in urban rail transit

    图 12  中英文年度发文量特征

    Figure 12.  Characteristics of annual publication volume in China and abroad

    图 13  关键词时序共现图

    Figure 13.  Keyword temporal co-occurrence

    图 14  区域年度发文趋势

    Figure 14.  Regional annual publication trends

    表  1  逆变回馈装置商业化案例

    Table  1.   Commercialization case of inverter feedback device

    产品制造商应用案例使用效果
    HESOP[72]阿尔斯通米兰地铁 3 号线99% 的制动能量能回收
    Sitras PCI[73]西门子贝尔尼纳铁路回收能量功率 2.5 MW
    INGEBER[74]英赫特安巴塞罗那、维也纳等地的地铁项目减少 12% 的能量损失
    INPEFS[75]英博电气广州某地铁站单次谐波补偿率 95% 以上
    再生制动回馈变流器[76]许继集团广州地铁 5 号线回收能量功率 1 MW
    下载: 导出CSV

    表  2  储能式城轨交通再生制动能量利用技术实际应用案例分析

    Table  2.   Practical case analysis of energy utilization technology of energy storage type regenerative braking in urban rail transit

    储能装置国家应用路线储能节能参数
    超级电容[164]中国北京地铁 5 号线最大存储能量 2.57 kW·h
    超级电容[166]西班牙马德里地铁容量为 2.3 kW·h,功率 1 MW
    超级电容[162]德国Mannheim 轻轨车辆最大功率 300 kW
    超级电容[163]中国香港地铁储存容量 2.8~45.0 MJ
    飞轮[169]中国北京地铁房山线安装容量1 MW,日平均节电量为 1 200~1 300 kW·h
    飞轮[168]美国洛杉矶地铁额定功率为 2 MW,能量容量为 8.33 kW·h
    飞轮[166]德国汉诺威的 USTRA 城轨交通系统
    电池[170]美国纽约市公交网络能量容量为 400 kW·h
    电池[171]法国巴黎有轨电车
    下载: 导出CSV

    表  3  文献来源

    Table  3.   Literature sources

    数据库检索方式检索主题主题词组合时间范围文献类型文献范围文献语言检索
    结果/条
    CNKI 主题检索  城市轨道交通 AND 再生制动  (地铁 OR 轨道交通 OR 城轨交通 OR 地铁列车 OR 城轨列车 OR 有轨电车 OR 地铁车辆 OR 城轨车辆)AND (再生制动 OR 能量回馈 OR 再生能量 OR 制动能量 OR 再生电能) 2002—2022 年 期刊  SCI 收录、EI 收录、核心期刊、CSSCI 期刊、CSCD 期刊 中文 294
    WoS 主题检索  Urban Rail Transit AND Regenerative Braking  (Urban Rail Transit OR Metro Train OR Transit System OR Urban Rail OR Urban Subway Line) AND (Regenerative Braking OR Energy Consumption OR Braking Energy OR Energy Recovery OR Energy Feedback OR Regenerative Energy) 2002—2022 年 Article,Review  SCI-E, SSCI, AHCI, CPCI-S, CPCI-SSH, ESCI, CCR-E, IC English 749
    下载: 导出CSV

    表  4  全球排名前10国家或地区发文情况

    Table  4.   Top 10 countries or regions in publication volume

    序号国家发文量/篇占比/%
    1中国34946.595
    2美国12616.822
    3英国587.744
    4意大利476.275
    5西班牙385.073
    6加拿大324.272
    7荷兰243.204
    8澳大利亚233.071
    9日本212.804
    10韩国202.670
    下载: 导出CSV
  • [1] 叶超,杨东阳,赵江南. 中国超大城市户籍人口转化的实证研究[J]. 地理学报,2022,77(2): 369-380.

    YE Chao, YANG Dongyang, ZHAO Jiangnan. An empirical research of the registered population transformation in China’s megacities[J]. Acta Geographica Sinica, 2022, 77(2): 369-380.
    [2] 米雪. 我国城市轨道交通TOD模式应用研究[D]. 大连: 大连理工大学, 2021.
    [3] 刘杰,陈锦渠,彭其渊,等. 城市轨道交通网络可靠性和运输服务质量评估[J]. 西南交通大学学报,2021,56(2): 395-402,450.

    LIU Jie, CHEN Jinqu, PENG Qiyuan, et al. Reliability and service quality evaluation for urban rail transit network[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 395-402,450.
    [4] 刘安海. 地铁再生制动能量回收系统研究[D]. 株洲: 湖南工业大学, 2021.
    [5] TALKINGTON S, GRIJALVA S. Rail transit regenerative braking energy recovery optimization to provide grid services[C]//2021 IEEE Power and Energy Conference at Illinois (PECI). Urbana: IEEE, 2021: 1-7.
    [6] HAN L, CHEN J F, LI H B, et al. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels[J]. Automation in Construction, 2022, 140: 104345.1-104345.15.
    [7] XING L S, LI X. Review of regenerative braking energy storage and utilization technology in urban rail transit[C]//The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering. Singapore: Springer, 2021: 775-783.
    [8] 钟志宏. 考虑车-地储能装置的城轨列车再生制动性能优化研究[D]. 北京: 北京交通大学, 2021.
    [9] QI L F, PAN H Y, PAN Y J, et al. A review of vibration energy harvesting in rail transportation field[J]. iScience, 2022, 25(3): 103849.1-103849.30.
    [10] 刘俐. 市域快速轨道交通线路规划的特点和建议[J]. 隧道与轨道交通,2020(2): 16-20,77.

    LIU Li. Characteristics and suggestions for planning of regional rapid rail transit line[J]. Tunnel and Rail Transit, 2020(2): 16-20,77.
    [11] 沈小军,魏鸿扬. 基于旁路直流回路的城轨交通再生制动能量调度研究[J]. 电工技术学报,2021,36(15): 3308-3316.

    SHEN Xiaojun, WEI Hongyang. Study of regenerative braking energy flowing of urban rail transit based on bypass DC loop[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3308-3316.
    [12] ZHANG C C, LU D Y, XIAO X M, et al. Modeling and analysis of global energy consumption process of urban rail transit system based on Petri net[J]. Journal of Rail Transport Planning & Management, 2022, 21: 100293.1-100293.18.
    [13] 崔晓璐,包鹏羽,陈佳欣,等. 高速铁路制动区间钢轨摩擦自激振动研究[J]. 西南交通大学学报,2023,58(1): 141-149.

    CUI Xiaolu, BAO Pengyu, CHEN Jiaxin, et al. Rail friction self-excited vibration in braking section of high-speed railway[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 141-149.
    [14] AZAM A, AHMED A, KAMRAN M S, et al. Knowledge structuring for enhancing mechanical energy harvesting (MEH): an in-depth review from 2000 to 2020 using CiteSpace[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111460.1-111460.21.
    [15] PAN H Y, QI L F, ZHANG Z T, et al. Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review[J]. Applied Energy, 2021, 286: 116518.1-116518.22.
    [16] 董正雨. 地铁列车再生制动储放电系统的研究[D]. 兰州: 兰州交通大学, 2021.
    [17] 何洪文,石曼,曹剑飞,等. 基于动态规划的再生制动能量管理策略[J]. 重庆理工大学学报(自然科学),2021,35(2): 74-80.

    HE Hongwen, SHI Man, CAO Jianfei, et al. Regenerative braking energy management strategy based on dynamic programming[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(2): 74-80.
    [18] 刘元立,李群湛. 含光伏和混合储能的同相牵引供电系统日前优化调度[J]. 西南交通大学学报,2023,58(1): 30-39.

    LIU Yuanli, LI Qunzhan. Day-ahead optimal scheduling of co-phase traction power supply system with photovoltaic and hybrid energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39.
    [19] BELAY KEBEDE A, WORKU G B. A research on regenerative braking energy recovery: a case of Addis Ababa light rail transit[J]. eTransportation, 2021, 8: 100117.1-100117.11.
    [20] 李奇,邹雪俐,蒲雨辰,等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报,2023,58(1): 9-21.

    LI Qi, ZOU Xueli, PU Yuchen, et al. Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21.
    [21] 沈小军,曹戈. 城轨交通制动能量回收超级电容储能阵列配置方法对比分析[J]. 电工技术学报,2020,35(23): 4988-4997.

    SHEN Xiaojun, CAO Ge. Comparative analysis on configuration methods of supercapacitor array for braking energy recovery of urban rail transit[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4988-4997.
    [22] 李建林,谭宇良,王楠,等. 新基建下储能技术典型应用场景分析[J]. 热力发电,2020,49(9): 1-10.

    LI Jianlin, TAN Yuliang, WANG Nan, et al. Typical application scenarios of energy storage technologies under new infrastructure[J]. Thermal Power Generation, 2020, 49(9): 1-10.
    [23] SHEN X J, WEI H Y, WEI L. Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line[J]. Applied Energy, 2020, 260: 114177.1-114177.9.
    [24] 刘炜,刘童童,王辉,等. 运行图驱动的城轨供电系统负荷过程动态仿真[J]. 西南交通大学学报,2022,57(5): 967-975.

    LIU Wei, LIU Tongtong, WANG Hui, et al. Dynamic simulation of load process for urban rail power supply system driven by operation diagram[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 967-975.
    [25] 赵荣华,杨中平,郑琼林. 城轨列车设置地面制动电阻的仿真研究[J]. 城市轨道交通研究,2008,11(9): 58-62.

    ZHAO Ronghua, YANG Zhongping, ZHENG Qionglin. Simulation of ground rheostatic braking in URT[J]. Urban Mass Transit, 2008, 11(9): 58-62.
    [26] 王东伟,吴霄,项载毓,等. 高速列车盘形制动系统热机耦合特性分析[J]. 西南交通大学学报,2021,56(2): 428-436.

    WANG Dongwei, WU Xiao, XIANG Zaiyu, et al. Investigation on thermo-mechanical coupling characteristics of disc brake system of high-speed train[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 428-436.
    [27] 霍利杰,杨轶成,孙婷,等. 地铁再生制动能量分散回馈多模控制研究[J]. 电气技术,2020,21(3): 37-43.

    HUO Lijie, YANG Yicheng, SUN Ting, et al. Research on multi-mode control of energy regenerative feedback of regenerative braking in metro[J]. Electrical Engineering, 2020, 21(3): 37-43.
    [28] LIN S, HUANG D, WANG A M, et al. Research on the regeneration braking energy feedback system of urban rail transit[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7329-7339. doi: 10.1109/TVT.2019.2921161
    [29] 李鹏. 城轨列车超级电容储能回馈技术研究[D]. 南昌: 华东交通大学, 2017.
    [30] 张丽艳,贾瑛,韩笃硕,等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报,2023,58(1): 22-29.

    ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29.
    [31] 彭赛庄. 地铁再生制动能量回馈吸收系统的研究[D]. 株洲: 湖南工业大学, 2015.
    [32] 李萍. 混合储能在城市轨道交通中的应用研究[D]. 兰州: 兰州交通大学, 2021.
    [33] 陶章荣,潘爱强. 城市轨道交通能馈式再生制动技术及其对电网的影响[J]. 华东电力,2009,37(12): 2035-2037.

    TAO Zhangrong, PAN Aiqiang. Regenerative braking of urban rail transit with energy feedback and its influence on power grids[J]. East China Electric Power, 2009, 37(12): 2035-2037.
    [34] FALVO M C, LAMEDICA R, BARTONI R, et al. Energy saving in metro-transit systems: impact of braking energy management[C]//SPEEDAM. Pisa: IEEE, 2010: 1374-1380.
    [35] 白锡彬. 城市轨道交通制动能量协同吸收技术应用研究[J]. 电气化铁道,2021,32(1): 51-54.

    BAI Xibin. Research on synergistic absorption technology of braking energy for urban rail transit[J]. Electric Railway, 2021, 32(1): 51-54.
    [36] 张戬,刘炜,谢文君,等. 基于逆变回馈装置的城市轨道交通分布式无功补偿方案研究[J]. 电工电能新技术,2020,39(8): 75-80.

    ZHANG Jian, LIU Wei, XIE Wenjun, et al. Research on distributed reactive power compensation scheme of urban rail based on inverter feedback device[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(8): 75-80.
    [37] 苏劼. 城市轨道交通能馈式牵引供电系统的应用研究[D]. 北京: 北京交通大学, 2009.
    [38] 刘秀美. 城轨车辆再生能馈式牵引供电技术研究[D]. 大连: 大连理工大学, 2015.
    [39] ZHANG Q R, GE B M, BI D Q. Study on grid-injected system with regenerative braking energy for subway[J]. Advanced Materials Research, 2012, 516/517: 1437-1442. doi: 10.4028/www.scientific.net/AMR.516-517.1437
    [40] 闫莎莎. 地铁车载逆变器的设计与仿真研究[J]. 机电一体化,2016,22(11): 35-38.

    YAN Shasha. Design and simulation of the inverter on subway[J]. Mechatronics, 2016, 22(11): 35-38.
    [41] SOE WIN T, HIRAKI E, TANAKA T. A novel active power quality compensator topology with DC voltage balancer for electrified railways[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2013, 8(6): 634-639. doi: 10.1002/tee.21907
    [42] LI J, QIU Z L, HU L L. Energy saving performance analysis of an inverter-based regenerative power re-utilization device for urban rail transit[J]. IOP Conference Series: Earth and Environmental Science, 2018, 133: 012008.1-012008.7.
    [43] 刘炜,李由,张戬,等. 计及逆变回馈装置间歇工作制的城轨供电计算[J]. 西南交通大学学报,2022,57(2): 384-391.

    LIU Wei, LI You, ZHANG Jian, et al. Calculation of urban rail AC/DC power supply with intermittent duty of inverter feedback devices[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 384-391.
    [44] 张岩,吴建华,张丙建,等. 青岛地铁逆变回馈装置的运行性能与节能效果评估[J]. 电气化铁道,2021,32(3): 66-69,73.

    ZHANG Yan, WU Jianhua, ZHANG Bingjian, et al. Evaluation of operation and energy-saving performance of inverter feedback device in Qingdao metro[J]. Electric Railway, 2021, 32(3): 66-69,73.
    [45] 刘炜,张浩,张戬,等. 城轨牵引供电系统逆变回馈装置的定容选址[J]. 西南交通大学学报,2021,56(6): 1355-1362.

    LIU Wei, ZHANG Hao, ZHANG Jian, et al. Optimal siting and sizing for inverter feedback devices applied in urban rail transit[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1355-1362.
    [46] 晏寒,解绍锋,王辉,等. 树形双边贯通供电方案及其应用研究[J]. 电力自动化设备,2022,42(5): 191-197.

    YAN Han, XIE Shaofeng, WANG Hui, et al. Research on tree bilateral continuous power supply scheme and its application[J]. Electric Power Automation Equipment, 2022, 42(5): 191-197.
    [47] 刘炜,刘雪晴,王辉,等. 市域铁路牵引电缆贯通供电方案及潮流算法[J]. 西南交通大学学报,2021,56(4): 689-697.

    LIU Wei, LIU Xueqing, WANG Hui, et al. Continuous power supply scheme and power flow algorithm of traction cables for urban railways[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 689-697.
    [48] 高博. 基于逆变回馈的地铁再生制动能量回收方案研究[D]. 石家庄: 石家庄铁道大学, 2019.
    [49] IBAIONDO H, ROMO A. Kinetic energy recovery on railway systems with feedback to the grid[C]//Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC. Ohrid: IEEE, 2010: T9-94.
    [50] 牛化鹏,张海龙,桑福环,等. 地铁列车模块化再生制动能量回馈变流器的研制[J]. 城市轨道交通研究,2015,18(6): 87-89.

    NIU Huapeng, ZHANG Hailong, SANG Fuhuan, et al. Design of metro regenerative braking energy feedback converter based on vehicle modulization[J]. Urban Mass Transit, 2015, 18(6): 87-89.
    [51] LATKOVSKIS L, GRIGANS L. Estimation of the untapped regenerative braking energy in urban electric transportation network[C]//2008 13th International Power Electronics and Motion Control Conference. Poznan: IEEE, 2008: 2066-2070.
    [52] STANA G, BRAZIS V. Electric transport braking energy storage system sizing by considering aging-related degradation during lifetime[C]//2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). Moscow: IEEE, 2019: 1-4.
    [53] STANA G, BRAZIS V. Analyses of trolleybus recuperation energy utilisation losses considering different efficiency ratios of traction inverter and DC/DC converter[C]//2019 20th International Scientific Conference on Electric Power Engineering (EPE). Kouty nad Desnou, Czech Republic: IEEE, 2019: 1-6.
    [54] STANA G, BRAZIS V. Modeling of two-trolleybus motion with braking energy exchange and transmission resistance[C]//2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED). Moscow: IEEE, 2018: 1-6.
    [55] STANA G, BRAZIS V. Energy consumption comparison of standard and articulated trolleybuses: case study[C]//2018 X International Conference on Electrical Power Drive Systems (ICEPDS). Novocherkassk: IEEE, 2018: 1-6.
    [56] IBAIONDO H, ROMO A. Kinetic energy recovery on railway systems with feedback to the grid[C]//Proceedings of 14th International Power Electronics and Motion Control Conference Ohrid: IEEE, 2010: 9-94.
    [57] STANA G, BRAZIS V. Two trolleybus motion modeling by calculating transmission loss compensation currents[C]//2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). Riga: IEEE, 2020: 1-6.
    [58] SALIH M, KOCH M, BAUMEISTER D, et al. Adapted newton-raphson power flow method for a DC traction network including non-receptive power sources and photovoltaic systems[C]//2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). Bucharest: IEEE, 2019: 1-5.
    [59] 刘卫. 再生制动逆变回馈装置在贵阳地铁中的运用[J]. 科技创新导报,2017,14(8): 40-41,44.

    LIU Wei. Application of regenerative braking inverter feedback device in Guiyang subway[J]. Science and Technology Innovation Herald, 2017, 14(8): 40-41,44.
    [60] 陈勇,罗锐鑫. 城市轨道交通再生制动能量吸收方式的研究[J]. 城市轨道交通研究,2012,15(8): 157-159.

    CHEN Yong, LUO Ruixin. On regenerative braking energy absorption in urban rail transit[J]. Urban Mass Transit, 2012, 15(8): 157-159.
    [61] 仇志凌,胡磊磊,李锦,等. 兆瓦级中压电网的地铁再生制动能量回馈装置优化[J]. 城市轨道交通研究,2018,21(6): 55-58.

    QIU Zhiling, HU Leilei, LI Jin, et al. Optimization of metro regenerative braking energy feedback inverter in megawatt medium voltage power grid[J]. Urban Mass Transit, 2018, 21(6): 55-58.
    [62] 侯峰,薛敏. 亚的斯亚贝巴轻轨列车再生制动能量回馈方案分析[J]. 城市轨道交通研究,2016,19(1): 64-68,73.

    HOU Feng, XUE Min. Analysis of regenerative braking energy feedback scheme for Addis Ababa light rail transit[J]. Urban Mass Transit, 2016, 19(1): 64-68,73.
    [63] 杜金辉. 再生制动能量回馈装置在地铁中的研究及应用[J]. 科技视界,2016(24): 15,49.

    DU Jinhui. Research and application of regenerative braking energy feedback device in subway[J]. Science & Technology Vision, 2016(24): 15,49.
    [64] 邹文骏. 苏州轨道交通列车再生制动能量吸收装置应用情况分析[J]. 城市轨道交通研究,2022,25(5): 21-26.

    ZOU Wenjun. Application condition analysis of Suzhou rail transit train regenerative braking energy absorption D evice[J]. Urban Mass Transit, 2022, 25(5): 21-26.
    [65] 江巍. 上海轨道交通8号线二期车辆闸瓦磨耗问题分析[J]. 大连交通大学学报,2015,36(2): 110-113.

    JIANG Wei. Analysis of brake shoe wear of Shanghai metro line 8 phase Ⅱ vehicle[J]. Journal of Dalian Jiaotong University, 2015, 36(2): 110-113.
    [66] 黎澍. 广州地铁二号线列车闸瓦金属镶嵌问题分析[J]. 中国设备工程,2019(12): 12-14.

    LI Shu. Analysis on metal mosaic of train brake shoe in Guangzhou metro line 2[J]. China Plant Engineering, 2019(12): 12-14.
    [67] 贺延芳,胡晓博. 西安地铁2号线车辆受电弓供电方案的设计及改进[J]. 机车车辆工艺,2019(3): 54-55.

    HE Yanfang, HU Xiaobo. Design and improvement of the pantograph power supply plan for vehicles on Xi’an metro line 2[J]. Locomotive & Rolling Stock Technology, 2019(3): 54-55.
    [68] 成吉安. 城市轨道交通双向变流器牵引供电技术的应用[J]. 城市轨道交通研究,2019,22(12): 110-113.

    CHENG Ji’an. Application of traction power supply technology with bidirectional converter for urban rail transit[J]. Urban Mass Transit, 2019, 22(12): 110-113.
    [69] 李昕. 城市轨道交通逆变回馈型再生制动能量吸收装置应用效果分析[J]. 铁道技术监督,2022,50(6): 49-52.

    LI Xin. Application effect analysis of inverter feedback type regenerative brake energy absorption dveice for urban rail transit[J]. Railway Quality Control, 2022, 50(6): 49-52.
    [70] 黄玲珍. 成都地铁10号线制动能量吸收装置应用介绍[J]. 第九届电能质量研讨会论文集, 2018: 592-597.

    HUANG Lingzhen. The introduction of train braking energy absorption on chengdu metro line 10[J]. Proceedings of the 9th Symposium on Power Quality, 2018: 592-597.
    [71] 刘艳, 姜东岳. 城市轨道交通再生制动能量回馈系统的分析与设计[C]//2014中国青岛城市轨道交通管理和技术创新研讨会论文集. 青岛: [出版者不详], 2014: 62-70.
    [72] LI X, CAO Y Y, YU X, et al. Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture[J]. Applied Energy, 2022, 306: 117977.1-117977.9.
    [73] ZHOU N, HOU Z H, ZHANG Y, et al. Enhanced swing electromagnetic energy harvesting from human motion[J]. Energy, 2021, 228: 120591.1-120591.12. doi: 10.1016/j.energy.2021.120591
    [74] FAN K Q, HAO J Y, WANG C Y, et al. An eccentric mass-based rotational energy harvester for capturing ultralow-frequency mechanical energy[J]. Energy Conversion and Management, 2021, 241: 114301.1-114301.14.
    [75] TRAN N, GHAYESH M H, ARJOMANDI M. Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement[J]. International Journal of Engineering Science, 2018, 127: 162-185. doi: 10.1016/j.ijengsci.2018.02.003
    [76] 《电气技术》编辑部. 许继研制的首套1 MW再生制动回馈变流器在广州地铁成功挂网运行[J]. 电气技术, 2011(9): 28.
    [77] 南海鹏. 城市轨道交通系统再生制动能量回收技术研究[D]. 大连: 大连交通大学, 2020.
    [78] ZHU F Q, YANG Z P, XIA H, et al. Hierarchical control and full-range dynamic performance optimization of the supercapacitor energy storage system in urban railway[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6646-6656. doi: 10.1109/TIE.2017.2772174
    [79] 鲁玉桐. 列车再生制动能量利用技术及应用研究[D]. 北京: 北京交通大学, 2019.
    [80] 杨俭,李发扬,宋瑞刚,等. 城市轨道交通车辆制动能量回收技术现状及研究进展[J]. 铁道学报,2011,33(2): 26-33.

    YANG Jian, LI Fayang, SONG Ruigang, et al. Review of the utilization of vehicular braking energy in urban railway transportation[J]. Journal of the China Railway Society, 2011, 33(2): 26-33.
    [81] 魏璁琪. 城市轨道交通再生制动能量利用研究[D]. 兰州: 兰州交通大学, 2019.
    [82] 王俭朴,任成龙. 城市轨道交通车辆储能技术研究[J]. 城市轨道交通研究,2017,20(1): 124-127.

    WANG Jianpu, REN Chenglong. Research of energy storage technology for urban rail transit vehicle[J]. Urban Mass Transit, 2017, 20(1): 124-127.
    [83] 苏玉京. 基于储能技术的城轨交通再生制动能量利用方案研究[D]. 武汉: 华中科技大学, 2013.
    [84] 禹皓元. 城轨飞轮储能式再生制动能量利用装置的仿真与系统设计[D]. 成都: 西南交通大学, 2019.
    [85] ŽUPAN I, ŠUNDE V, BAN Ž, et al. Algorithm with temperature-dependent maximum charging current of a supercapacitor module in a tram regenerative braking system[J]. Journal of Energy Storage, 2021, 36: 102378.1-102378.13. doi: 10.1016/j.est.2021.102378
    [86] CERAOLO M, LUTZEMBERGER G, MELI E, et al. Energy storage systems to exploit regenerative braking in DC railway systems: different approaches to improve efficiency of modern high-speed trains[J]. Journal of Energy Storage, 2018, 16: 269-279. doi: 10.1016/j.est.2018.01.017
    [87] GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039
    [88] GAO Z Y, FANG J J, ZHANG Y N, et al. Control of urban rail transit equipped with ground-based supercapacitor for energy saving and reduction of power peak demand[J]. International Journal of Electrical Power & Energy Systems, 2015, 67: 439-447.
    [89] 游志昆,周群,王为. 地铁车辆再生制动飞轮储能回收装置研究[J]. 机车电传动,2019(6): 106-109,114.

    YOU Zhikun, ZHOU Qun, WANG Wei. Research on flywheel energy storage device of regenerative brake for metro vehicles[J]. Electric Drive for Locomotives, 2019(6): 106-109,114.
    [90] CAPASSO A, LAMEDICA R, RUVIO A, et al. Modelling and simulation of electric urban transportation systems with energy storage[C]//2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). Florence: IEEE, 2016: 1-5.
    [91] 闫小伟. 城市轨道交通车辆再生制动能量利用技术比较研究[D]. 成都: 西南交通大学, 2015.
    [92] QI L F, WU X P, ZENG X H, et al. An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles[J]. Energy, 2020, 200: 117472.1-117472.13.
    [93] 师瑞峰,陈晓溪,张杰,等. 超级电容与轨道交通融合发展的现状与挑战[J]. 科学技术与工程,2021,21(29): 12368-12376.

    SHI Ruifeng, CHEN Xiaoxi, ZHANG Jie, et al. Current status and challenges of the integrated development of super capacitors and rail transit[J]. Science Technology and Engineering, 2021, 21(29): 12368-12376.
    [94] TEYMOURFAR R, ASAEI B, IMAN-EINI H, et al. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line[J]. Energy Conversion and Management, 2012, 56: 206-214. doi: 10.1016/j.enconman.2011.11.019
    [95] RADU P, SZELAG A, STECZEK M. On-board energy storage devices with supercapacitors for metro trains—case study analysis of application effectiveness[J]. Energies, 2019, 12(7): 1291.1-1291.22.
    [96] 张秋瑞,葛宝明,毕大强. 超级电容在地铁制动能量回收中的应用研究[J]. 电气化铁道,2012,23(2): 40-43.

    ZHANG Qiurui, GE Baoming, BI Daqiang. Research of application of super-capacitance for energy recovery of subway braking energy[J]. Electric Railway, 2012, 23(2): 40-43.
    [97] IQBAL M Z, AZIZ U. Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices[J]. Journal of Energy Storage, 2022, 46: 103823.1-103823.29.
    [98] 夏欢,杨中平,林飞,等. 城轨交通超级电容储能系统变增益控制方法研究[J]. 北京交通大学学报,2015,39(5): 105-111.

    XIA Huan, YANG Zhongping, LIN Fei, et al. Research on variable gain control method for supercapacitor energy storage system in urban rail transit[J]. Journal of Beijing Jiaotong University, 2015, 39(5): 105-111.
    [99] RÉCHARD G, GOUTTEFANGEAS R. Recovering energy from train braking for traction and grid use[J]. Energy Procedia, 2017, 143: 61-66. doi: 10.1016/j.egypro.2017.12.648
    [100] HU J S, ZHAO Y K, LIU X J. The design of regeneration braking system in light rail vehicle using energy-storage Ultra-capacitor[C]//2008 IEEE Vehicle Power and Propulsion Conference. Harbin: IEEE, 2008: 1-5.
    [101] 许爱国,谢少军,姚远,等. 基于超级电容的城市轨道交通车辆再生制动能量吸收系统[J]. 电工技术学报,2010,25(3): 117-123.

    XU Aiguo, XIE Shaojun, YAO Yuan, et al. Regenerating energy storage system based on ultra-capacitor for urban railway vehicles[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 117-123.
    [102] LIU W, XU J X, TANG J K. Study on control strategy of urban rail train with on-board regenerative braking energy storage system[C]//IECON 2017—43 Annual Conference of the IEEE Industrial Electronics Society. New York: ACM, 2017: 3924-3929.
    [103] CHEN B Z, GUO Y H, WANG H, et al. The control strategy of charging converter of super capacitor energy storage type trolleybus[C]//2021 6th International Conference on Power and Renewable Energy (ICPRE). Shanghai: IEEE, 2021: 1209-1212.
    [104] WANG X, LUO Y B, QIN B, et al. Ultracapacitor energy storage systems based on dynamic setting and coordinated control for urban trains[J]. IFAC-PapersOnLine, 2020, 53(2): 14954-14959. doi: 10.1016/j.ifacol.2020.12.1987
    [105] 陈怀鑫,杨中平,林飞,等. 应用于城轨交通供电系统的超级电容储能装置稳定性研究[J]. 铁道学报,2016,38(3): 59-65.

    CHEN Huaixin, YANG Zhongping, LIN Fei, et al. Stability research of stationary super-capacitor energy storage system applied in urban rail power supply system[J]. Journal of the China Railway Society, 2016, 38(3): 59-65.
    [106] GARCIA P, FERNANDEZ L M, GARCIA C A, et al. Energy management system of fuel-cell-battery hybrid tramway[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4013-4023. doi: 10.1109/TIE.2009.2034173
    [107] WANG X, LUO Y B, QIN B, et al. Power dynamic allocation strategy for urban rail hybrid energy storage system based on iterative learning control[J]. Energy, 2022, 245: 123263.1-123263.12.
    [108] AFIF A, RAHMAN S M, TASFIAH AZAD A, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage—a review[J]. Journal of Energy Storage, 2019, 25: 100852.1-100852.24.
    [109] 张友鹏,杨宏伟,赵珊鹏. 超级电容在高速铁路再生制动能量存储中的应用及控制[J]. 储能科学与技术,2019,8(6): 1145-1150.

    ZHANG Youpeng, YANG Hongwei, ZHAO Shanpeng. Application and control of super capacitor in high-speed railway regenerative braking energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1145-1150.
    [110] 王豫. 城市轨道交通再生能馈技术及装置应用研究[D]. 昆明: 昆明理工大学, 2019.
    [111] PAN D, ZHAO L T, LUO Q, et al. Study on the performance improvement of urban rail transit system[J]. Energy, 2018, 161: 1154-1171. doi: 10.1016/j.energy.2018.07.067
    [112] 赵思锋,唐英伟,王赛,等. 基于飞轮储能技术的城市轨道交通再生能回收控制策略研究[J]. 储能科学与技术,2018,7(3): 524-529.

    ZHAO Sifeng, TANG Yingwei, WANG Sai, et al. The study of control strategy for urban mass transit based on flywheel energy storage system[J]. Energy Storage Science and Technology, 2018, 7(3): 524-529.
    [113] 齐洪峰. 飞轮储能与轨道交通系统技术融合发展现状[J]. 电源技术,2022,46(2): 137-140.

    QI Hongfeng. Progress of technology integration between flywheel energy storage and rail transportation system[J]. Chinese Journal of Power Sources, 2022, 46(2): 137-140.
    [114] 戴兴建,魏鲲鹏,张小章,等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术,2018,7(5): 765-782.

    DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782.
    [115] RUPP A, BAIER H, MERTINY P, et al. Analysis of a flywheel energy storage system for light rail transit[J]. Energy, 2016, 107: 625-638. doi: 10.1016/j.energy.2016.04.051
    [116] 刘平,李树胜. 基于飞轮储能阵列的岸桥微网控制系统建模分析[J]. 微特电机,2020,48(6): 33-39,44.

    LIU Ping, LI Shusheng. Modeling analysis on flywheel energy storage array-based shore power micro-grid control system[J]. Small & Special Electrical Machines, 2020, 48(6): 33-39,44.
    [117] 王大杰,孙振海,陈鹰,等. 1 MW阵列式飞轮储能系统在城市轨道交通中的应用[J]. 储能科学与技术,2018,7(5): 841-846.

    WANG Dajie, SUN Zhenhai, CHEN Ying, et al. Application of array 1 MW flywheel energy storage system in rail transit[J]. Energy Storage Science and Technology, 2018, 7(5): 841-846.
    [118] 刘平,李树胜,李光军,等. 基于磁悬浮储能飞轮阵列的地铁直流电能循环利用系统及实验研究[J]. 储能科学与技术,2020,9(3): 910-917.

    LIU Ping, LI Shusheng, LI Guangjun, et al. Experimental research on DC power recycling system in the subway based on the magnetically suspended energy-storaged flywheel array[J]. Energy Storage Science and Technology, 2020, 9(3): 910-917.
    [119] RASTEGARZADEH S, MAHZOON M, MOHAMMADI H. A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains[J]. Energy, 2020, 206: 118092.1-118092.13.
    [120] 李树胜,付永领,刘平,等. 磁悬浮飞轮储能UPS系统集成应用及充放电控制方法研究[J]. 中国电机工程学报,2017,37(增1): 170-176.

    LI Shusheng, FU Yongling, LIU Ping, et al. Research on integrated application and charging-discharging control method for the magnetically suspended flywheel storage-based UPS system[J]. Proceedings of the CSEE, 2017, 37(S1): 170-176.
    [121] WANG Y, LI J, ZHANG G, et al. Control strategy of flywheel energy storage arrays in urban rail transit[C]//International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2022: 41-51.
    [122] LI X J, PALAZZOLO A. A review of flywheel energy storage systems: state of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: 103576.1-103576.13.
    [123] MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. doi: 10.1016/j.rser.2016.09.060
    [124] 杨波. 城市轨道交通再生制动能量反馈技术研究[D]. 成都: 西南交通大学, 2019.
    [125] 胡婧娴,宋文吉,林仕立,等. 1500 V城市轨道交通锂电池储能系统的应用[J]. 城市轨道交通研究,2015,18(1): 35-38.

    HU Jingxian, SONG Wenji, LIN Shili, et al. Application of lithium-ion battery energy storage system in 1500 V Urban rail transit[J]. Urban Mass Transit, 2015, 18(1): 35-38.
    [126] 吴健,王占国,张言茹. 锂离子电池在轨道交通装备上的适应性研究[J]. 铁道机车车辆,2022,42(2): 43-49.

    WU Jian, WANG Zhanguo, ZHANG Yanru. Research on adaptability of lithium ion battery in rail transit equipment[J]. Railway Locomotive & Car, 2022, 42(2): 43-49.
    [127] WANG W, LI Y, SHI M, et al. Optimization and control of battery-flywheel compound energy storage system during an electric vehicle braking[J]. Energy, 2021, 226: 120404.1-120404.14.
    [128] MOUSAVI G S M, NIKDEL M. Various battery models for various simulation studies and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 477-485. doi: 10.1016/j.rser.2014.01.048
    [129] ITANI K, DE BERNARDINIS A, KHATIR Z, et al. Energy management of a battery-flywheel storage system used for regenerative braking recuperation of an Electric Vehicle[C]//IECON 2016—42 Annual Conference of the IEEE Industrial Electronics Society. Florence: IEEE, 2016: 2034-2039.
    [130] 李辉,赵滨,吴健,等. 有轨电车的电池/超级电容器能量管理[J]. 电池,2022,52(1): 48-52.

    LI Hui, ZHAO Bin, WU Jian, et al. Energy management of battery/supercapacitor for trams[J]. Battery Bimonthly, 2022, 52(1): 48-52.
    [131] 杨丰萍,郑文奇,刘锋,等. 城市轨道交通车载混合储能系统的研究[J]. 华东交通大学学报,2019,36(1): 33-40.

    YANG Fengping, ZHENG Wenqi, LIU Feng, et al. Research on vehicle-mounted hybrid energy storage system for urban rail transit[J]. Journal of East China Jiaotong University, 2019, 36(1): 33-40.
    [132] LIU Y Y, YANG Z P, WU X B, et al. An adaptive energy management strategy of stationary hybrid energy storage system[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2261-2272. doi: 10.1109/TTE.2022.3150149
    [133] 秦强强,李宇杰,张骄,等. 基于列车运行状态的再生制动能量高效利用混合储能装置研发[J]. 中国基础科学,2018,20(6): 36-40.

    QIN Qiangqiang, LI Yujie, ZHANG Jiao, et al. Research on efficient utilization of hybrid energy storage device based on train running status[J]. China Basic Science, 2018, 20(6): 36-40.
    [134] CHENG L, WANG W, WEI S Y, et al. An improved energy management strategy for hybrid energy storage system in light rail vehicles[J]. Energies, 2018, 11(2): 423.1-423.15.
    [135] 秦强强,郭婷婷,林飞,等. 基于能量转移的城轨交通电池储能系统能量管理和容量配置优化[J]. 电工技术学报,2019,34(增1): 414-423.

    QIN Qiangqiang, GUO Tingting, LIN Fei, et al. Optimal research for energy management and configuration of battery ESS in urban rail transit based on energy transfer[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 414-423.
    [136] 秦强强,张骄,李宇杰,等. 基于列车运行状态的城轨地面混合储能装置分时段控制策略[J]. 电工技术学报,2019,34(增2): 760-769.

    QIN Qiangqiang, ZHANG Jiao, LI Yujie, et al. Research on time-phased control strategy of urban rail ground hybrid energy storage device based on train operation status[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 760-769.
    [137] 许爱国. 城市轨道交通再生制动能量利用技术研究[D]. 南京: 南京航空航天大学, 2009.
    [138] 吴健,张言茹,郑鑫杰. 钛酸锂电池在城市轨道交通的适用性研究[J]. 都市快轨交通,2021,34(6): 39-46.

    WU Jian, ZHANG Yanru, ZHENG Xinjie. Study on the applicability of lithium titanate battery in urban rail transit[J]. Urban Rapid Rail Transit, 2021, 34(6): 39-46.
    [139] 庞艳凤,袁月赛. 地铁再生能量利用方案比较[J]. 机车电传动,2014(1): 77-79,83.

    PANG Yanfeng, YUAN Yuesai. Comparison of regenerating energy utilization schemes in urban rail system[J]. Electric Drive for Locomotives, 2014(1): 77-79,83.
    [140] 王少荣,彭晓涛,唐跃进,等. 电力系统稳定控制用高温超导磁储能装置及实验研究[J]. 中国电机工程学报,2007,27(22): 44-50.

    WANG Shaorong, PENG Xiaotao, TANG Yuejin, et al. Apparatus and experiment of high temperature superconducting magnetic energy storage used for power system stability enhancement[J]. Proceedings of the CSEE, 2007, 27(22): 44-50.
    [141] 戴少涛,王邦柱,马韬. 超导磁储能系统发展现状与展望[J]. 电力建设,2016,37(8): 18-23.

    DAI Shaotao, WANG Bangzhu, MA Tao. Superconducting magnetic energy storage system: status and prospect[J]. Electric Power Construction, 2016, 37(8): 18-23.
    [142] 张妍. 超导磁储能装置的高温超导磁体失超及检测技术研究[D]. 北京: 北京交通大学, 2021.
    [143] ZHOU Q, JIN J X, YANG R H. Static state power smoothing and transient power quality enhancement of a DC microgrid based on multi-function SMES/battery distributed hybrid energy storage system[J]. Energy Reports, 2022, 8: 44-51. doi: 10.1016/j.egyr.2022.08.051
    [144] REN G Z, MA G Q, CONG N. Review of electrical energy storage system for vehicular applications[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 225-236. doi: 10.1016/j.rser.2014.08.003
    [145] COLMENAR-SANTOS A, MOLINA-IBÁÑEZ E L, ROSALES-ASENSIO E, et al. Technical approach for the inclusion of superconducting magnetic energy storage in a smart city[J]. Energy, 2018, 158: 1080-1091. doi: 10.1016/j.energy.2018.06.109
    [146] LI W X, YANG T H, LI G Y, et al. Experimental study of a novel superconducting energy conversion/storage device[J]. Energy Conversion and Management, 2021, 243: 114350.1-114350.7.
    [147] CUI G P, JIA L, SU Z H. SMES-battery hybrid energy storage system integrated railway power conditioner for peak load shifting and power quality improvement in high-speed electrical railway[C]//2021 24th International Conference on Electrical Machines and Systems (ICEMS). Gyeongju: IEEE, 2021: 2246-2250.
    [148] 丁鹏飞,费骏韬,孙玉坤,等. 轨道交通混合储能系统及其控制策略综述[J]. 电器与能效管理技术,2019(20): 19-25,31.

    DING Pengfei, FEI Juntao, SUN Yukun, et al. Summary of mixed energy storage system and its control strategy in rail transit[J]. Electrical & Energy Management Technology, 2019(20): 19-25,31.
    [149] 孙瑞. 城轨交通地面储能系统能量管理策略[J]. 电工技术,2020(1): 41-43,46.

    SUN Rui. Energy management strategy of ground energy storage system of urban rail transit[J]. Electric Engineering, 2020(1): 41-43,46.
    [150] 章宝歌,李萍,张振,等. 应用于城轨列车混合储能系统的能量管理策略[J]. 储能科学与技术,2020,9(1): 204-210.

    ZHANG Baoge, LI Ping, ZHANG Zhen, et al. Energy management strategy of hybrid energy storage system for urban rail trains[J]. Energy Storage Science and Technology, 2020, 9(1): 204-210.
    [151] 刘宇嫣,林飞,杨中平. 城轨交通地面储能系统的能量管理策略综述[J]. 都市快轨交通,2021,34(6): 9-17.

    LIU Yuyan, LIN Fei, YANG Zhongping. Overview of energy management strategies for wayside energy storage system of urban rail transit[J]. Urban Rapid Rail Transit, 2021, 34(6): 9-17.
    [152] 李奇,黄文强,尚伟林,等. 新型供电方式有轨电车能量管理策略[J]. 西南交通大学学报,2020,55(4): 820-827.

    LI Qi, HUANG Wenqiang, SHANG Weilin, et al. Energy management strategy for trams with novel power system[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 820-827.
    [153] GAO Z Y, FANG J J, ZHANG Y N, et al. Control strategy for wayside supercapacitor energy storage system in railway transit network[J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(2): 181-190. doi: 10.1007/s40565-014-0060-4
    [154] 赵亚杰,夏欢,王俊兴,等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报,2015,30(14): 427-433.

    ZHAO Yajie, XIA Huan, WANG Junxing, et al. Control strategy of ultracapacitor storage system in urban mass transit system based on dynamic voltage threshold[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433.
    [155] ZHU F Q, YANG Z P, LIN F, et al. Dynamic threshold adjustment strategy of supercapacitor energy storage system based on no-load voltage identification in urban rail transit[C]//2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific. Seogwipo: IEEE, 2019: 1-6.
    [156] CICCARELLI F, IANNUZZI D. A Novel energy management control of wayside Li-ion capacitors-based energy storage for urban mass transit systems[C]//International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion. Sorrento: IEEE, 2012: 773-779.
    [157] 夏欢,杨中平,杨志鸿,等. 基于列车运行状态的城轨超级电容储能装置控制策略[J]. 电工技术学报,2017,32(21): 16-23.

    XIA Huan, YANG Zhongping, YANG Zhihong, et al. Control strategy of supercapacitor energy storage system for urban rail transit based on operating status of trains[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 16-23.
    [158] CHEN X P, WANG Y D, WU Q M. A bio-fuel power generation system with hybrid energy storage under a dynamic programming operation strategy[J]. IEEE Access, 2019, 7: 64966-64977. doi: 10.1109/ACCESS.2019.2911454
    [159] YOSHIDA Y, ARAI S, KOBAYASHI H, et al. Charge/discharge control of wayside batteries via reinforcement learning for energy-conservation in electrified railway systems[J]. Electrical Engineering in Japan, 2021, 214(2): e23319.1-e23319.13.
    [160] YANG Z P, ZHU F Q, LIN F. Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1150-1160. doi: 10.1109/TITS.2019.2963785
    [161] 刘宇嫣,杨中平,林飞,等. 城轨地面式混合储能系统自适应能量管理与容量优化配置研究[J]. 电工技术学报,2021,36(23): 4874-4884.

    LIU Yuyan, YANG Zhongping, LIN Fei, et al. Study on adaptive energy management and optimal capacity configuration of urban rail ground hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4874-4884.
    [162] STEINER M, SCHOLTEN J. Energy storage on board of DC fed railway vehicles PESC 2004 conference in Aachen, Germany[C]//2004 IEEE 35th Annual Power Electronics Specialists Conference. Aachen: IEEE, 2004: 666-671.
    [163] KHODAPARASTAN M, MOHAMED A. Supercapacitors for electric rail transit systems[C]//2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). San Diego: IEEE, 2017: 896-901.
    [164] 赵立峰,张发明. 北京地铁5号线再生电能吸收装置[J]. 现代城市轨道交通,2008(1): 6-8,1.

    ZHAO Lifeng, ZHANG Faming. Regenerative energy absorption equipment in Beijing metro line 5[J]. Modern Urban Transit, 2008(1): 6-8,1.
    [165] 邓谊柏,黄家尧,陈挺,等. 城市轨道交通超级电容技术[J]. 都市快轨交通,2021,34(6): 24-31.

    DENG Yibo, HUANG Jiayao, CHEN Ting, et al. Supercapacitor technology for urban rail transit systems[J]. Urban Rapid Rail Transit, 2021, 34(6): 24-31.
    [166] 胡婧娴,林仕立,宋文吉,等. 城市轨道交通储能系统及其应用进展[J]. 储能科学与技术,2014,3(2): 106-116.

    HU Jingxian, LIN Shili, SONG Wenji, et al. Energy storage for urban rail transportation[J]. Energy Storage Science and Technology, 2014, 3(2): 106-116.
    [167] 陈朗. 超级电容在城市轨道交通系统中的应用[J]. 都市快轨交通,2008,21(3): 76-79.

    CHEN Lang. Application of super capacitors in urban rail transit system[J]. Urban Rapid Rail Transit, 2008, 21(3): 76-79.
    [168] SOLIS O, CASTRO F, BUKHIN L, et al. LA metro red line wayside energy storage substation revenue service regenerative energy saving results[C]//IEEE Joint Rail Conference. Colorado: ASME, 2014: V001T07A003.1-V001T07A003.7.
    [169] 喻奇. 飞轮储能技术在城市轨道交通的应用[J]. 电气化铁道,2020,31(2): 53-57.

    YU Qi. Application of flywheel energy storage technology in urban rail transit[J]. Electric Railway, 2020, 31(2): 53-57.
    [170] OGURA K, NISHIMURA K, MATSUMURA T, et al. Test results of a high capacity wayside energy storage system using Ni-MH batteries for DC electric railway at New York city transit[C]//2011 IEEE Green Technologies Conference (IEEE-Green). Baton Rouge: IEEE, 2011: 1-6.
    [171] OGASA M. Application of energy storage technologies for electric railway vehicles—examples with hybrid electric railway vehicles[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5(3): 304-311. doi: 10.1002/tee.20534
    [172] CHEN C M. CiteSpace Ⅱ: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. doi: 10.1002/asi.20317
    [173] 陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2): 242-253.

    CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253.
    [174] 吴小平,张祖涛,潘亚嘉,等. 轨道交通领域新能源再生技术研究现状与展望[J]. 西南交通大学学报,2023,58(5): 1180-1193,1202.

    WU Xiaoping, ZHANG Zutao, PAN Yajia, et al. Research status and prospect of new energy regeneration technology in rail transit field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193,1202.
    [175] GAO Z Y, YANG L X. Energy-saving operation approaches for urban rail transit systems[J]. Frontiers of Engineering Management, 2019, 6(2): 139-151. doi: 10.1007/s42524-019-0030-7
    [176] SHEN X J, WEI H Y, LIE T T. Management and utilization of urban rail transit regenerative braking energy based on the bypass DC loop[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1699-1711. doi: 10.1109/TTE.2020.3038278
    [177] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [178] JIA C Y, LI H B, ZHOU X Z, et al. A renewable energy harvesting wind barrier based on coaxial contrarotation for self-powered applications on railways[J]. Energy, 2022, 258: 124842.1-124842.19.
    [179] SONG M Y, WU X B, JIN T M, et al. Collaborative optimization design of multi-train operation curve based on utilization of regenerative braking energy in urban rail transit[C]//International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2022: 291-299.
    [180] PU Q, ZHU X M, ZHANG R T, et al. Optimal design of automatic train operation information with the consideration of regenerative braking[C]//Proceedings of the 9th International Conference on Information Communication and Management. Prague: ACM, 2019: 118-122.
    [181] ZHAO Y. Optimization model design of regenerative braking energy utilization of subway train based on block zoning[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): 032002.1-032002.13.
    [182] GE Z, YANG Y B, ZHANG J, et al. Optimal capacity design of energy feedback system in urban rail considering duty classes[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC). Gijon: IEEE, 2021: 1-4.
    [183] ZHONG Z H, YANG Z P, FANG X C, et al. Hierarchical optimization of an on-board supercapacitor energy storage system considering train electric braking characteristics and system loss[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2576-2587. doi: 10.1109/TVT.2020.2967467
    [184] CAI J J, XUN J, XIAO X, et al. Timetable optimization model with considering regenerative braking power for urban rail[C]//2020 Chinese Automation Congress (CAC). Shanghai: IEEE, 2021: 3018-3023.
    [185] OGURA K, NISHIMURA K, OKU Y. A bidirectional DC-DC converter for battery electric light rail vehicle and its test Run results[C]//2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS). Toulouse: IEEE, 2020: 1-6.
    [186] KAWAGOE N, WIJAYA F P, KOBAYASHI H, et al. Experimental tests results of damping control with over voltage resistor for regenerative brake control of railway vehicle[C]//2018 International Power Electronics Conference. Niigata: IEEE, 2018: 3490-3494.
    [187] FEDELE E, IANNUZZI D, DEL PIZZO A. Onboard energy storage in rail transport: review of real applications and techno-economic assessments[J]. IET Electrical Systems in Transportation, 2021, 11(4): 279-309. doi: 10.1049/els2.12026
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  396
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2023-04-07
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-04-21

目录

    /

    返回文章
    返回