• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

冻融-弯曲荷载耦合作用下PP-ECC梁的抗弯性能

李福海 杨宗驰 刘耕园 刘梦辉 吴昊南 陈昭 李固华

李福海, 杨宗驰, 刘耕园, 刘梦辉, 吴昊南, 陈昭, 李固华. 冻融-弯曲荷载耦合作用下PP-ECC梁的抗弯性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220645
引用本文: 李福海, 杨宗驰, 刘耕园, 刘梦辉, 吴昊南, 陈昭, 李固华. 冻融-弯曲荷载耦合作用下PP-ECC梁的抗弯性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220645
LI Fuhai, YANG Zongchi, LIU Gengyuan, LIU Menghui, WU Haonan, CHEN Zhao, LI Guhua. Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220645
Citation: LI Fuhai, YANG Zongchi, LIU Gengyuan, LIU Menghui, WU Haonan, CHEN Zhao, LI Guhua. Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220645

冻融-弯曲荷载耦合作用下PP-ECC梁的抗弯性能

doi: 10.3969/j.issn.0258-2724.20220645
基金项目: 国家重点研发计划(2021YFB2600900);四川省自然科学基金项目(2023NSFSC0025,2021YJ0545,2022NSFSC1095)
详细信息
    作者简介:

    李福海(1979—),男,教授级高级工程师,研究方向为混凝土材料及其耐久性,E-mail:lifuhai2007@home.swjtu.edu.cn

    通讯作者:

    李固华(1963—),男,教授,博士,研究方向为混凝土结构安全与其耐久性, E-mail:lgh-100@vip.163.com

  • 中图分类号: TU528.41

Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads

  • 摘要:

    为探究冻融以及冻融-弯曲荷载耦合作用对聚丙烯纤维水泥基复合材料(PP-ECC)梁抗弯性能的影响,设置7种试验工况,采用三分点加载方式对PP-ECC梁抗弯性能进行研究,分析冻融及冻融-弯曲荷载耦合作用下PP-ECC梁的荷载-跨中挠度曲线、抗弯承载力及裂缝发展形态差异;基于计算假定和正常环境下PP-ECC梁抗弯承载力的计算模型,结合PP-ECC材料冻融劣化机理,推导出PP-ECC梁在冻融环境下抗弯承载力计算模型;在此基础上引入持荷损伤系数γ,建立冻融-弯曲荷载耦合作用下PP-ECC梁抗弯承载力计算模型. 研究结果表明:不同持荷比的PP-ECC梁极限抗弯承载力在冻融循环作用下出现不同程度降低,500次冻融循环后,持荷比为0、0.25、0.50的PP-ECC梁极限抗弯承载力分别降低了28.70%、27.09%、35.69%;受拉区PP-ECC材料开裂后不退出工作仍能协同受拉钢筋参与全截面受力;PP-ECC 梁在达到极限状态时,受拉区呈多条裂缝稳态发展模式,且随冻融损伤加剧,梁体最大裂缝宽度增大,裂缝数量减少;单一冻融以及冻融-弯曲荷载耦合作用下的PP-ECC梁仍满足平截面假定;基于平截面假定建立的冻融和冻融-弯曲荷载耦合作用下PP-ECC 梁的抗弯承载力计算模型吻合度分别到达0.88~1.06和0.96~1.10.

     

  • 图 1  试件构造

    Figure 1.  Structure of the specimen

    图 2  温湿度循环示意

    Figure 2.  Temperature and humidity cycle

    图 3  持荷冻融试件加载装置

    Figure 3.  Loading device for load-bearing freeze-thaw specimens

    图 4  三分点加载试验

    Figure 4.  Three-point loading test

    图 5  应变片布置

    1—荷载传感器;2—分配工装;3—PP—ECC梁侧面;4—铰支座;5—应变片;6—百分表;7—PP-ECC梁顶面.

    Figure 5.  Strain gauge layout

    图 6  跨中荷载-位移曲线

    Figure 6.  Mid-span load displacement curve

    图 7  裂缝分布

    Figure 7.  Crack distribution

    图 8  梁截面混凝土应变分布

    Figure 8.  Concrete strain distribution of beam section

    图 9  冻融过程中PP-ECC的极限压缩性能变化

    Figure 9.  Changes in ultimate compression performance of PP-ECC during freeze-thaw process

    图 10  冻融过程中PP-ECC的拉伸性能变化

    Figure 10.  Changes in tensile properties of PP-ECC during freeze-thaw process

    图 11  抗弯承载力

    Figure 11.  Flexural bearing capacity

    表  1  PP-ECC梁具体试验参数

    Table  1.   Specific test parameters of PP-ECC beam

    试验梁
    分组
    试件编号冻融循环
    次数/次
    弯曲
    荷载/%
    抗弯性能
    试验
    第Ⅰ组E0-00
    第Ⅱ组E0-300300
    E0-500500
    第Ⅲ组E0.25-30030025
    E0.25-500500
    第Ⅳ组E0.50-30030050
    E0.50-500500
    下载: 导出CSV

    表  2  钢筋性能指标

    Table  2.   Rebar performance index

    型号直径/
    mm
    截面面
    积/mm2
    屈服强
    度/MPa
    极限强
    度/MPa
    弹性模
    量/GPa
    Q235628.26236390196
    HRB400628.26406576197
    HRB4001078.50411535203
    下载: 导出CSV

    表  3  PP-ECC梁的配合比

    Table  3.   Mix proportion of PP-ECC beam kg/m3

    水泥粉煤灰PP纤维
    820.0442.018.2504.8
    下载: 导出CSV

    表  4  PP-ECC梁四点弯曲试验结果

    Table  4.   Four-point bending test results of PP-ECC beam

    试件编号屈服荷载/kN极限荷载/kN极限抗弯承载力/(kN·m)裂缝最大宽度/mm最终裂缝数量/条
    E0-033.9533.975.100.9036
    E0-30029.3428.844.331.1030
    E0-50024.8224.223.631.3425
    E0.25-30030.8830.724.611.2532
    E0.25-50024.6425.023.751.4229
    E0.50-30026.6726.013.901.5523
    E0.50-50021.2121.873.281.8018
    下载: 导出CSV

    表  5  PP-ECC材料本构参数

    Table  5.   Constitutive parameters of PP-ECC materials

    PP-ECC 单轴拉伸本构参数 单轴受压本构参数
    σtc/MPaεtc/%σtu/MPaεtu/% σcu/MPaεcu/%
    0.860.0882.33 3.789 31.650.38
    下载: 导出CSV

    表  6  抗弯承载力对比

    Table  6.   Comparison of flexural bearing capacity

    冻融循环
    次数/次
    抗弯承载力计算值/
    试验值
    计算值/
    (kN·m)
    试验值/
    (kN·m)
    04.505.100.88
    3004.184.330.97
    5003.883.631.06
    下载: 导出CSV

    表  7  抗弯承载力对比

    Table  7.   Comparison of flexural bearing capacity

    冻融循环
    次数/次
    持荷比抗弯承载力计算值/
    试验值
    计算值/
    (kN·m)
    试验值/
    (kN·m)
    30004.184.330.97
    0.254.464.610.97
    0.503.753.900.96
    50003.883.631.07
    0.254.143.751.10
    0.503.483.281.06
    下载: 导出CSV
  • [1] CAMPIONE G, CANNELLA F, CAVALERI L. Shear and flexural strength prediction of corroded R. C. beams[J]. Construction and Building Materials, 2017, 149: 395-405. doi: 10.1016/j.conbuildmat.2017.05.125
    [2] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [3] LI V C, WU H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites[J]. Applied Mechanics Reviews, 1992, 45(8): 390-398. doi: 10.1115/1.3119767
    [4] YUAN F, PAN J L, DONG L T, et al. Mechanical behaviors of steel reinforced ECC or ECC/concrete composite beams under reversed cyclic loading[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014047.1-04014047.8.
    [5] POURFALAH S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J]. Construction and Building Materials, 2018, 158: 921-937. doi: 10.1016/j.conbuildmat.2017.10.077
    [6] JIN H S, LI F H, HU D H. Research on the flexural performance of reinforced engineered cementitious composite beams[J]. Structural Concrete, 2022, 23(4): 2198-2220. doi: 10.1002/suco.202100012
    [7] 黄士元. 近代混凝土技术[M]. 西安: 陕西科学技术出版社, 1998.
    [8] SUN W, ZHANG Y M, YAN H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research, 1999, 29(9): 1519-1523. doi: 10.1016/S0008-8846(99)00097-6
    [9] KOSIOR-KAZBERUK M, BERKOWSKI P. Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load[J]. Procedia Engineering, 2017, 172: 513-520. doi: 10.1016/j.proeng.2017.02.060
    [10] SHEN Y, LIU J, ZHOU S Y, et al. Experimental investigation on the freeze-thaw durability of concrete under compressive load and with joints[J]. Construction and Building Materials, 2019, 229: 116893.1-116893.12. doi: 10.1016/j.conbuildmat.2019.116893
    [11] WANG Y, WANG G, GUAN Z W, et al. The effect of freeze-thaw cycles on flexural behaviour of FRP-reinforced ECC beams[J]. Archives of Civil and Mechanical Engineering, 2021, 21(3): 1-24.
    [12] ZHANG Y X, BAI S, ZHANG Q B, et al. Failure behavior of strain hardening cementitious composites for shear strengthening RC member[J]. Construction and Building Materials, 2015, 78: 470-473. doi: 10.1016/j.conbuildmat.2015.01.037
    [13] DING Y, YU K Q, YU J T, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study[J]. Construction and Building Materials, 2018, 177: 102-115. doi: 10.1016/j.conbuildmat.2018.05.122
    [14] YUN H D, KIM S W, LEE Y O, et al. Tensile behavior of synthetic fiber-reinforced strain-hardening cement-based composite (SHCC) after freezing and thawing exposure[J]. Cold Regions Science and Technology, 2011, 67(1/2): 49-57.
    [15] 靳贺松,李福海,何肖云峰,等. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报,2020,34(8): 8071-8076,8082. doi: 10.11896/cldb.18080117

    JIN Hesong, LI Fuhai, HE Xiaoyunfeng, et al. Research on frost resistance of polypropylene fiber cement-based composite material[J]. Materials Reports, 2020, 34(8): 8071-8076,8082. doi: 10.11896/cldb.18080117
    [16] DUAN A, LI Z Y, ZHANG W C, et al. Flexural behaviour of reinforced concrete beams under freeze-thaw cycles and sustained load[J]. Structure and Infrastructure Engineering, 2017, 13(10): 1350-1358. doi: 10.1080/15732479.2016.1268172
    [17] 李福海,胡丁涵,余泳江,等. PP-ECC梁抗弯性能试验研究[J]. 西南交通大学学报,2021,56(2): 272-281.

    LI Fuhai, HU Dinghan, YU Yongjiang, et al. Experimental study on flexural capacity of PP-ECC beam[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 272-281.
    [18] 崔晶波. 荷载冻融耦合作用下再生粗骨料自密实混凝土梁的受弯力学性能试验研究[D]. 乌鲁木齐: 新疆大学, 2020.
    [19] IAN T. Research on seismic behavior of steel tube reinforeed conerete bridge columns[D]. Dalian: Dalian University of Technology, 2019.
    [20] LI F H, WEN T, LI J Y, et al. Ultrasonic-detected damage and bending behavior of reinforced PP-ECC beams after coupled action of freeze-thaw cycles and constant flexural load[J]. Case Studies in Construction Materials, 2022, 17: e01284.1-e01284.15.
    [21] 徐港,李运攀,潘琪,等. 盐冻环境下钢筋混凝土梁抗弯性能试验研究[J]. 土木建筑与环境工程,2014,36(3): 86-91.

    XU Gang, LI Yunpan, PAN Qi, et al. Experimental analysis on flexural performance of reinforced concrete beam in salt-frost environment[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(3): 86-91.
    [22] 刘泽军,李艳,温丛格. PVA-ECC劈裂抗拉强度与变形性能试验研究[J]. 建筑材料学报,2016,19(4): 746-751. doi: 10.3969/j.issn.1007-9629.2016.04.024

    LIU Zejun, LI Yan, WEN Congge. Experimental study on strength and deformation performance of PVA-ECC under splitting tension[J]. Journal of Building Materials, 2016, 19(4): 746-751. doi: 10.3969/j.issn.1007-9629.2016.04.024
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  84
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回